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Preface

Since the summer of 1992, the Soar/IFOR research group has been building intelligent automated agents
for tactical air simulation. The Soar/IFOR research project exists at three sites, the University of
Michigan, the University of Southern California, and Carnegie Mellon University. The ultimate goal of
this project is to develop automated pilots whose behavior in simulated engagements is indistinguishable
from that of human pilots. Our work has concentrated on developing agents for beyond visual range
engagements where there are either one or two fighter planes on each side.

This technical report is a collection of the research papers that have been generated from this project as
of Spring 1994. Most of the papers were presented at the Fourth Conference on Computer Generated
Forces and Behavioral Representation in Orlando in May 1994. The others include our paper from the
Third Conference on CGF & BR and two papers presented at other workshops and conferences.

The research covered in these papers spans a wide spectrum of issues in agent development such as
explanation [3,4], managing situational awareness [5], managing multiple interacting goals [6],
coordination between multiple agents [8], natural language processing [9], developing believable agents
[11], and event tracking [12]. We have also done research on the infrastructure to support the
development of these agents which includes work on knowledge acquisition and use [7], interfacing
agents to simulation environments [10], and developing low cost simulators [13]. The papers are
organized by having the two overview papers first (the one presented last year followed by the one to be
presented this year) [1] & [2], followed by all of the other papers in alphabetic order by author.
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Behavioral Representation. Orlando, FL.
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Intelligent Automated Agents for Flight Training Simulators

Randolph M. Jones,1 Milind Tambe,2 John E. Laird,1 and Paul S. Rosenbloom3

'Artificial Intelligence Laboratory 2School of Computer Science
University of Michigan Carnegie Mellon University

1101 Beal Avenue Pittsburgh, PA 15213
Ann Arbor, MI 48109-2110

3Department of Computer Science and
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina Del Rey, CA 90292

Abstract agents (friendly and enemy forces) in the
training scenario. Thus, it is important

Trainiing in flight simulators will be more that these agents behave as realistically as
effective if the agents involved in the shinu possible. Standard automated and semi-
lation behave realistically. Accomplishing automated agents can provide this to a lim-
this requires that the automated agents be ited extent, but trainees can quickly rec-
under autonomous, intelligent control. We ognize automated agents and take advan-
are using the Soar cognitive architecture to tages of known weaknesses in their behav-
implement intelligent agents that behave ior. To provide a more realistic training sit-
as much like humans as possible. In or- uation, automated agents should be indis-
der to approximate human behavior, the tinguishable from other human pilots talc-

agents must integrate planning and reac- ing part in the simulation.

tion in real time, adapt to new and un-

expected situations, learn with experience, To construct such intelligent, automated

and exhibit the cognitive limitations and agents, we have applied techniques from

strengths of humans. This paper describes the fields of artificial intelligence and cog-

two simple tactical fight scenarios and the nitive science. The agents are implemented

knowledge required for an agent to com- within the Soar system, a state-of-the-art,

plete them. In addition, the paper de- integrated cognitive architecture (Rosen-

scribes an implemented agent model that bloom et al., 1991). These agents incor-

performs in limited tactical scenarios on porate knowledge gleaned from interviews

three different fight simulators. with experts in flight tactics and analysis
of the tactical domain. Soar is a promising
candidate for developing agents that be-

The goal of this research is to construct have like humans. Flexible and adaptive

intelligent, automated agents for flight sim- behavior is one of Soar's primary strengths,

ulators that are used to train navy pilots and Soar's learning mechanism provides it

in flight tactics. When pilots train in tacti- with the capability of improving its perfor-

cal simulations, they learn to react to (and mance with experience. In addition, Soar

reason about) the behaviors of the other allows the smooth integration of planning
and reaction in decision making (Pearson



et al, 1993). Finally, Soar is the foundation reflect the same types of weaknesses as hu-
for the development of a proposed unified mans. These include mental limitations,
theory of human cognition (Newell, 1990), such as attention and cognitive load, and
and thus maps quite well onto a number of physical limitations, such as reduced cog-
the cognitive issues of interest. This paper nitive processing under high forces (such
reports the results of our research in con- as during a hard turn).
structing an intelligent agent for an initial, To capture the complex interactions be-
simple training scenario and our efforts at tween agents in a simulation, we feel it nec-
supplementing the agent's knowledge in or- essary for each agent to be as autonomous
der to carry out more complex missions. and intelligent as possible. Simulation via

stochastic methods can capture general be-
Complexities of tactical decision- haviors of groups of agents, but a more re-
making alistic simulation requires each agent to be-

have individually, with is own set of goals,
In order to complete a tactical mission, constraints, and perceptions. In addition,

pilots incorporate multiple types of knowl- if the agents are to be used for training pi-
edge. These include, for example, knowl- lots, they must be intelligent in order to
edge about the goals of the mission, air- provide as rich a training environment as
plane and weapon constraints, survival tac- would flying against real humans.
tics, controlling the vehicle, characteristics
of the environment, and the physical and Requirements for an intelligent au-
cognitive capabilities of all of the agents tomated agent
taking part in the scenario. In addition,
pilots use their knowledge flexibly and ex- The primary research question is how in-
hibit adaptive behavior. This includes a telligent, automated agents should be im-
variety of capabilities, such as reasoning plemented. A simple solution would be
about (and surviving in) unexpected sit- to attempt to create "simulation-pilot ex-
uations, adapting to new situations, learn- pert systems". This would involve con-
ing from experience, and addressing multi- verting knowledge about high-level tacti-
ple goals simultaneously (e.g., protecting a cal decision-making into a fixed rule base.
position, intercepting the enemy, and sur- The system would suggest the most appro-
viving). Finally, pilots integrate decision- priate action (or set of actions) based on
making during a mission with split-second the current status of the environment. In
reactions to new situations and potential fact, a number of expert systems have been
threats. implemented for various aspects of tactical

Robust automated forces that can - decision-making (e.g., Kornell, 1987; Rit-

out general simulated missions must ad- ter & Feurzeig, 1987; Zytkow & Erickson,
dress these issues, especially if the forces 1987; ).
are to behave as humans would in simi- However, while expert systems have some
lar circumstances. In addition to provid- of the strengths required for realistic sim-
ing the wide range of capabilities that hu- ulation, they are nsually weak in other ar-
man pilots exhibit, intelligent agents must eas. In a standard rule-based approach, it
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is difficult to capture the complexity of the ular tactic works (so that the fighter will
multiple, dynamic goals that pilots must have enough space to come around for a
reason about. In contrast, systems that rear-quarter shot if the long and medium-
can reason well in such a complex domain range missiles miss).
generally have difficulties making decisions With the appropriate supporting knowl-
in real time, and they often do not have edge, the system can function in situations
the ability to react to changes in the en- that the programmer may not have an-
vironment when there is not enough time ticipated. Maintaining lateral separation
to plan ahead. In addition, systems with from the bogey's flight path is a general
only high-level tactical knowledge prove to principle that allows the fighter room to
be rather rigid. Unless the system can negotiate a turn for a short-range missile
be preprogrammed for every possible con- shot. This principle may have an impact in
tingency, its performance degrades greatly a large number of tactical situations, and
when it finds itself in unexpected situa- therefore shouldn't be considered as merely
tions. Finally, expert systems generally ig- an instruction to follow for one particu-
nore the possibility of learning with expe- lar type of intercept. If the system rea-
rience and other cognitive aspects of the sons from first principles, the programmer
task. Intelligent, autonomous agents must does not have to hard code every possible
combine all of these strengths, having the contingency, and good variations on tactics
ability to reason about multiple goals in should emerge in response to unanticipated
a complex environment, react quickly and changes in the simulation environment.
appropriately when the time for complex
reasoning is limited, adapt to new situa- Implementing the agent in this mannertions gracefully, and improve its behavior also provides advantages in terms of adding
with experience, new knowledge to the system. If the tacti-cal decisions emerge from low-level knowl-
In order to create an agent that can r edge, high-level decisions will change ap-

son and react in real time, and is flexible propriately as the supporting knowledge is
enough to adapt to new situations, it is not changed or supplemented. New low-level
enough simply to encode high-level tactics knowledge (such as a better understand-
as rules in the system. Rather, the sys- ing of geometric principles or radar limita-
tem must also understand why each high- tions) will interact with existing knowledge
level tactical decision is made, so it must to generate subtle (or possibly dramatic)
contain knowledge of the first principles changes in behavior. Thus, the agent can
that support those decisions. For example, reason in a number of new situations with-
part of one tactic for intercepting a bogey out requiring a new specific rule for each
involves achieving a desired lateral sepa- case. The ease of adding new knowledge
ration from the bogey's flight path. One to the system also makes it possible to in-
way to generate this behavior is to include corporate existing machine-learning mech-
a specific rule for the agent to move to anisms. These can allow the system to
the desired lateral separation when it is on adapt and improve its behavior with ex-
the appropriate leg of the intercept. How- perience, as well as provide insights into
ever, a more intelligent agent encodes the how human pilots learn about tactics.
knowledge that explains why this partic-

3



The Soar architecture for problem solving or fuel plane) that holds a steady course
(Newell, 1990) is well suited for this type and altitude, and does not carry any of-
of task. It divides knowledge into prob- fensive threats. The key to this scenario is
/em apacm and allows goals and actions that the bogey does not attempt to evade
in one problem space to be implemented (jink) the fighter's attack in any way. Al-
via reasoning in another. Thus, when the though this situation is not likely to occur
agent has a high level goal to intercept a often in real combat situations, it is a valu-
bogey, for example, it can switch problem able training situation for pilots. It teaches
spaces and reason about the characteristics them how to line up the delivery of various
of its weapons, radar, airplane, and mili- types of missiles when the bogey's behavior
tary doctrine. The knowledge from each is very predictable. When a non-offensive
of these spaces combines to generate an bogey's behavior becomes less predictable,
appropriate tactical action. In turn, the the tactics required to intercept it actually
high-level action can then be implemented become simpler (but less effective).
in a problem space that contains medium- There are three main phases involved in
level knowledge about plane maneuvers or attacking a non-jinking bogey (see Figure
low-level knowledge about moving the stick 1). These involve delivering long, medium,
and flipping switches. and short-range missiles. During each of

Because knowledge is separated into prob- the phases, the fighter must assume that
lem spaces, it can be easily updated. For the current missile will miss, and simul-
example, if the agent's plane is equipped taneously maneuver into the most advan-
with a new radar with a longer range, only tageous position for the next phase. For
the knowledge in the "radar" space need example, while moving closer to the bogey
be updated. New decisions made in the to fire a long-range missile, the fighter also
radar space will interact with the results attempts to achieve the best lateral sep-
of reasoning in other problem spaces, even- aration and target aspect for a shot with
tually impacting high-level decisions such the medium-range missile (see Figure 2).
as which specific actions should be taken After delivering a medium-range missile,
to intercept a bogey. Likewise, if the au- the fighter must perform displacement and
tomated agent is moved to a new simula- counter turns in order to end up behind
tion environment with a new interface, we the bogey. This allows the fighter to fire
can appropriately update the knowledge in a rear-quarter short-range missile. Due to
the "control" problem space, leaving the these constraints, the fighter cannot simply
remaining knowledge intact, head on a collision course with the bogey,

but must get to the bogey as quickly as
Simple tactical situations possible while eusuring that it can eventu-

ally achieve a rear-quarter missile shot.

Our initial effort to construct an intelli- The ac ti cs re xecu tin tis sc o ar

gent agent focuses on two tactical scenar- The tactics for executing this scenario are

ios used in training pilots: the "non-jinking relatively simple. The fighter must achieve

bogey" and "1-v-1 aggressive boge sce- the appropriate lateral separation and tar-

narios. In the non-jinking bogey scenario, get aspect while firing its weapons at the

the target is an airplane (such as a cargo right times. Then it must execute the dis-

4
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Figure 2. Definition of lateral separation and target aspect.
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placement and counter turns and deliver Details of the intelligent agent
the short-range missile. As mentioned pre-
viously, we could code these tactics directly In order to construct an agent that suc-
into rules for the agent, but they would cessfully intercepts a non-i inking bogey, we
then only work under very specific circum- analyzed tactics for the scenario and inter-
stances where everything goes right. Thus, viewed former pilots and radar intercept

we have implemented the knowledge that officers. This allowed us to determine the

supports these tactics. This knowledge jus- underlying knowledge and first principles

tifies why each tactical decision should be that support the tactics. Then, we en-

made when it is made. This allows the sys- coded this knowledge into an executable

tem, for example, to get back on course for Soar system.

a short-range missile shot if it misses its The Soar agent's knowledge is organized
opportunity for the medium-range missile into problem spaces, each containing oper-
shot for some reason. In addition, any par- ators that allow the agent to reason about
ticular action that the agent generates will particular types of goals. When the agent
be based on the supporting knowledge, and cannot immediately carry out an action at
the agent has the potential to explain its one level, it uses Soar's universal subgoal-
decision (a facility we plan to add in the ing mechanism to move into an alternate
future). problem space and consider methods for

The 1-v-1 aggressive bogey scenario in- carrying out that action. Therefore, high-

volves two airplanes with similar capabil- level tactical decisions are eventually im-

ities. One is protecting a high-value unit plemented as medium-level maneuver ac-

and the other is attempting to destroy it. tions or low-level control actions, and the

When the two fighters come in contact they agent always has multiple goals in memory

both attempt to intercept and destroy each that it uses to reason about and react to

other, with the overall goal of surviving, its ever-changing situation.

This scenario highlights an interaction be- Depending on the particular simulation
tween different low-level constraints that platform, the current Soar agent requires
results in tactical decisions. For example, between 13 and 17 problem spaces to rea-
if one fighter is equipped with a slightly son with; i.e., 13-17 different types of goals
better radar, missiles with longer range, that it reasons about. Most of these are
or a more mobile airplane, it dramatically shown in Figure 3. The mission, protect-
affects the actions that should be taken hvu, barcap, and intercept problem spaces
in completing the mission and surviving, encode tactical knowledge for carrying out
Our agent so far only partially implements missions and performing intercepts. The
this 1-v-1 scenario, and it involves a num- problem spaces for weapons and missiles
ber of issues that make it more complex include knowledge about specific weapons
than the non-jinking bogey scenario. Af- and the actions that must be performed
ter discussing the current state of the agent to deliver them to a target. The maneu-
model, we will describe these issues in de- ver and absolutes problem spaces deter-
tail. mine the actual plane maneuvers that must

be carried out to implement higher-level
actions. The remaining problem spaces im-

6
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plement airplane maneuvers at various lev- ply flying the airplane as well as worrying
els of specification, down to the level of about tactical decisions and maneuvering.
stick and button commands that are issued Finally, we have implemented the scenario
to the flight simulator. on BBN's ModSAF simulator, which has

At any particular instant, between 5 and the most realistic flight dynamics of the
12 problem spaces (or hierarchical goals) three simulators. This simulator works in12 poble slces or ierachial )ls) real time (with a scheduler dividing time
are usually active. Thus, when changes oc- teal the siti anduaen and it

cur in the agent's situation, there are mul- between the simulation and agents) and it

tiple levels at which the agent may react takes command at the level of maneuver

(Pearson et al., 1993). For example, at a actions (such as desired heading and alti-

low lewvl, a sudden down draft can cause tude) without making the agent concern

a change in climb-rate or altitude, lead- itself with how the maneuvers are actually

ing the agent directly to pull back on the implemented with airplane controls.

stick. At a higher level, a maneuver by a As of now, we have not completely de-
bogey on the radar can cause a change in veloped the knowledge base that would al-
tactics. Any reasoning involved in imple- low our agent to successfully fly the 1-v-
menting the new tactical decision also per- 1 aggressive bogey scenario. This scenario
colates down to a new maneuver or stick differs from the non-jinking bogey scenario
action. In this manner, Soar maintains its along two major dimensions. First, the bo-
variety of goals in parallel, and violations gey maneuvers, so its behavior is not en-
of the goals at any level lead to immediate tirely predictable. Second, the bogey is ag-
action at the appropriate level. gressive and has offensive capabilities, so

We have implemented an initial model for any action that is taken must also address

the non-jinking bogey scenario in whole or the overall goal of surviving: the agent can-

in part on three separate flight simulators. not simply close in on the bogey and shoot

The simplest simulator moves planes in a it.

two-dimensional grid-world. In addition, In order to successfully complete a mis-
the planes do not move with realistic flight sion against an aggressive bogey, the agent
dynamics. We used this simulator to pro- must include not only extra knowledge in
totype the system and debug the high-level its tactical problem spaces, but it must also
tactics embedded in the system. The sec- have two new capabilities to address the
ond flight simulator was adapted from the above issues. First, the agent must be able
flight simulator provided with SGI graph- to interpret and assess its current situation
ics workstations. It works in real time and at all (or at least most) times. This primar-
requires the agent to issue very low level ily involves interpreting the bogey's cur-
commands at the level of moving the stick rent actions and predicting its future ac-
(by issuing mouse pixel movements) and tions. As with most of the agent's reason-
other low-level commands (by simulating ing, the interpretation process also takes
keyboard presses). The non-jinking bogey place at multiple levels. At a low level,
scenario has not yet been completely im- the fighter must recognize when the bogey
plemented on this simulator, because Soar h&,ý initiated a turn and when it has com-
must handle the low level intricacies of sim- pleted one. At a higher level, the fighter

8



must determine whether the turn indicates The issues of interpretation and simulta-
some kind of threat, and what that threat neous goals are not trivial, and they play
may be. For example, if the bogey initially central roles in agent reasoning for any tac-
comes to a collision course with the fighter, tical situations except the simplest ones.
this probably indicates that the bogey is Much of tactical decision making involves
aggressive and is going to try to shoot the creating a model of the world from lim-
fighter. If the bogey points towards the ited information and addressing multiple
fighter and then makes a hard turn, this goals and constraints, such as the current
indicates that the bogey has probably just mission, survival, and the characteristics
fired a missile. The agent must interpret and status of the weapons and airplane.
the limited information it gets from its sen- We have not completed the incorporation
sors. Then it must use this interpretation of this knowledge into the agent yet, but
to predict the goals that the bogey is try- we are taking advantage of the strengths
ing to achieve and the actions at different of the Soar architecture in order to im-
levels that the bogey is carrying out. plement these two important capabilities

The second necessary capability for the (Covrigaru, 1992).

agent is to use multiple high-level goals to
constrain the actions that the agent gener- Discussion
ates. These types of goals are a bit differ- We have implemented an intelligent, au-
ent from the parallel goals that the Soar tonomous agent that completes missions in
agent already handles, because they arenot ierrchcalin atue. athr, hey a simp~le tactical scenario. The agent is
not hierarchical in nature. Rather, they designed with flexibility in mind. It rea-
are distinct goals that interact with each sons from first principles about high-level
other. For example one goal, destroy b- tactical decisions, and is thus able to rea-
gey, implies that the fighter should close inon the bogey as quickly as possible. How- son in unexpected situations and recover
eve, ather bgoyalquicklye, pressules tHew gracefully from mistakes. In addition, the
ever, another goal, survive, pressures the agent's knowledge base is flexible enough
fighter to avoid the bogey in order to stay to be easily transferred between simulation
out of the bogey's weapon range. These platforms and to encode new tactics in a
conflicting goals both must be used to se- modular fashion. We are currently imple-
lect from multiple possible actions. This menting the knowledge necessary for the
type of reasoning leads directly to com- aent th kowledge necessary for
posite tactical actions. For example, the agent to complete the 1-v-i aggressive bo-fighter may get close enough to fire a mis- gey scenario. This includes addressing the
sile and then make a sudden hard turn. two important issues of situation interpre-
sihe dthen m aktbeas hardenoughtokep th. tation and achieving multiple simultaneous
The turn must be hard enough• to keep the aditrciggas

bogey and fighter from getting close too

quickly, but not so hard that the fighter Our future research will involve incremen-
loses its radar lock on the bogey (which tally expanding the agent's knowledge base
would put the fighter at a large disadvan- so it can reason robustly in a wide range
tage). In this manner, the agent deter- of 1-v-1 scenarios. We will also soon fo-
mines the best action that supports two cus on modeling more complex scenarios,
simultaneous, conflicting goals. including those involving more than two

9



planes. This will also allow us to expand Rosenbloom, P. S., Laird, J. E., Newell, A.,
the agent's coverage of the cognitive be- & McCarl, R. (1991). A preliminary anal-
haviors involved in tactical flight. For ex- ysis of the Soar architecture as a basis for
ample, we will incorporate more intelligent general intelligence. Artificial Intelligence,
methods for situation assessment, model- 47, 289-325.
ing other agents (i.e., robustly predicting Zytkow, J. M., & Erickson, M. D. (1987).
actions and goals of other participants in Tactical manager in a simulated environ-
the scenario, both friends and foes), iden- ment. In Z. W. Ras & M. Zemankova (Eds.),
tifying potential threats, and reacting to Methodologies for intelligent systems. Am-
them. Beyond that, we will focus on more sterdam: Elsevier Science.
complex cognitive tasks, such as more com-
plete integration of planning, reaction, and
execution, more sophisticated interpreta-
tion of the environment and other agents,
and learning from instruction.
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Abstract time, flexibly use a small amount of tactical
knowledge about two classes of one-versus-

This article reports on recent progress one (1-v-1) Beyond Visual Range (BVR)in the development of TacAir-Soar, an tactical air scenarios. In the non -jinking

intelligent automated agent for tactical air bogey scenarios, o n the non-jinking
simulation. This includes progress in bogey scenarios, one plane (the non-jinking
expanding the agent's coverage of the bogey) is unarmed and maintains a straight-

x'and-level flight path. The other plane is
tactical air domain, progress in enhancing armed with long-range radar-guided,
the quality of the agent's behavior, and medium-range radar-guided, and short-range
progress in building an infrastructure for infrared-guided missiles. Its task is to set up
research and development in this area. for a sequence of missile shots, at

increasingly shorter ranges, until the non-
Introduction jinking bogey is destroyed. Though such

At the Third Conference on Computer scenarios are not common in the real world,
Generated Forces and Behavioral they are used as training exercises because
Representation we presented an initial report they teach pilots how to position their planes
on an effort to build intelligent automated for later shots while simultaneously taking
agents for tactical air simulation (Jones et al, earlier ones. In the aggressive bogey
1993). The ultimate intent behind this effort scenarios, one plane is attempting to protect
is to develop automated pilots whose a High-Value Unit (HVU), such as an
behavior in simulated battlefields is nearly aircraft carrier, via a Barrier Combat Air
indistinguishable from that of human pilots Patrol (BARCAP); that is, the plane patrols
(and to go beyond this to develop generic between the HVU and the anticipated threat
agents that are readily specializable for this (by cycling around a racetrack pattern), and
and other domains). If such agents can be then intercepts any threat that it detects in its
created, they should provide close to ideal sector. The other plane is attempting to
force supplements for many of the attack the HVU, but to do so it must first
applications anticipated for distributed intercept the defensive aircraft.
interactive battlefield simulation. The prototype agents were all

As of the initial report, prototype agents implemented as parameterized variations of
had been constructed that could, in real- a single multi-functional tactical-air agent,
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called TacAir-Soar (or TAS for short). TAS decisions to be informed by the current
is built within Soar, a software architecture situation (and interpretations of it, as
that is being developed as a basis for both an generated by rule firings) - and the use of
integrated intelligent system and a unified ModSAF (Calder et al, 1993) as the
theory of human cognition (Rosenbloom, interface to the DIS environment (Schwamb,
Laird, & Newell, 1993; Newell, 1990). Soar Koss, & Keirsey, 1994).
provides TAS with basic support for When combined with the very
knowledge representation, problem solving, preliminary domain knowledge that was
reactivity, external interaction, and learning, encoded at the time, this combination of
Soar also provides a potential means of capabilities yielded competent behavior for
integrating into TAS additional planning, the non-jinking bogey scenarios, but only
learning, and natural language capabilities fragments of behavior for the aggressive
that are being developed independently bogey scenarios (due to insufficient
within Soar. knowledge about this class of scenarios).

The prototype TAS agents actually One type of aircraft, similar to an F14, was
utilized only a subset of the capabilities flown in these scenarios.
provided either directly by Soar, or built The purpose of this article is to provide
separately within it. However, this subset - a ireport, one year later, on the progress in
along with the domain-specific (and moving TAS from the initial prototype
domain-independent) rules that were added agents towards the ultimate goal of human-
to Soar's long-term memory - was like automated pilots that are broadly
sufficient to yield a combination of capable in tactical air scenarios. This report
knowledge-based decision making, is intended to be complemented by the more
task(/goal) switching and decomposition, detailed articles about particular aspects of
and real-time interaction with the DIS TAS that also appear in these proceedings
environment. Knowledge-based decision- (Johnson, 1994a; Jones & Laird, 1994;
making arises from Soar's ability to make Jones et al, 1994; Koss & Lehman, 1994;
decisions based on integrating preferences Laird & Jones, 1994; Rubinoff & Lehman,
generated by arbitrary sets of rules. Task 1994; Schwamb, Koss, & Keirsey, 1994;
switching also arises from Soar's decision- Tambe & Rosenbloom, 1994; van Lent &
making abilities, but here as specifically Wray, 1994), rather than to substitute for
applied to the selection and switching of them. Thus, where there is a potential
tasks. Tasks(/goals) are represented as overlap between this report and any of the
operators in Soar, and are one of the main more detailed articles, this report will
foci of its decision making. Task become more terse and defer (and refer) to
decomposition arises from using the same the appropriate detailed article(s).
decision mechanism to drive task In the body of this report, progress on
performance, plus Soar's ability to domain capabilities will be covered first.
automatically generate a new performance The focus here is on expanding the classes
context when a decision is problematic. of domain scenarios in which the agents can
When these mechanisms are combined with odmaienarosrin whch thogens cn
rules that generate preferences about which behave appropriately. Second, progress on

subtasks are appropriate for which intelligent capabilities will be covered. The
poblatas parent tap rinathe particur focus here is on expanding the classes of
problematic parent tasks (in the particular basic intelligent abilities - such as coping
situation of interest), task decomposition with multiple interacting tasks, plan
occurs. Real-time interaction with the DIS recognition, learning, planning, self-

environment arises from the combination of explanation, and natural language -

Soar's incorporation of perception and exhibited by the agents. Third, progress on

action within the inner loop of its decision infrastructure capabilities - such as

making capabilities - thus allowing all integration with the DIS simulation
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environment, low-cost interfaces for human When the F14 is finally close enough
pilots, knowledge acquisition, and (that is, it has the MiG29 within its LRM's
documentation - will be covered. Finally, launch-acceptability region), and is oriented
the article will be concluded with plans for correctly, it launches a long-range missile,
the future. and performs an fpole (a turn that decreases

the rate of closure between the aircraft - to
Domain Capabilities delay the arrival of any missiles that might

have been launched from the MiG29 -
Progress on domain capabilities has while simultaneously keeping the MiG29 on

occurred in two general areas: (1) improving the F14's radar). The MiG29 detects the
the robustness and range of the scenarios fpole, and beams in response, by turning
within 1-v-1 BVR tactical air; and (2) perpendicular to the F14 (to render blind the
scaling up the scenarios in terms of the Doppler radar that is guiding the F14's
number of vehicles, the range of vehicle missile). The F14 then aaempts to search
types, and the complexity of the required for and reacquire the MiG29, while
organization and communication among the simultaneously changing altitude in order to
vehicles, confuse the MiG29's search and acquire

Within 1-v-i, the TAS agents can now activities.
exhibit competent behavior in the BVR Both planes then generally attempt to
tactical-air segments of the aggressive bogey set up for further missile launches, and to
scenarios. This includes the ability to patrol avoid missiles launched by their opponents.
in a racetrack pattern; select radar modes, Depending on the exact timing of the
detect opponents on radar, perform search engagement, and on the willingness of the
and acquire activities when opponents drop two planes to take risks (this is a TAS
off of radar, and maneuver so as to confuse parameter), zero, one, or both of the planes
the opponent's search and acquire activities; may be shot down in the process.I
determine and attempt to achieve This scenario can be played out with
appropriate intercept geometries and launch- both planes flown by TAS agents, or with
acceptability regions (LARs); select, fire, one or the other flown by a human pilot in a
and support missiles; and detect and evade flight simulator. A formal demonstration of
enemy missiles. the aggressive bogey scenario in the

As played out in the DIS environment, a WISSARD laboratory at Oceana Naval Air
typical aggressive bogey scenario involves Station during June '93 successfully pitted
an F14 which is defending its aircraft carrier two TAS agents in simulated Fl4s against
against possible attack by a MiG29. The two human pilots (in F18 simulators, but
F14 patrols in a racetrack until it spots the acting as MiG29s). This demonstration was
MiG29 (the F14's radar and missiles both set up as two independent I-v-1
have longer ranges than do the MiG29's). engagements (out of radar range of each
The F14 continues to monitor the MiG29 other). Given the early state of development
until its commit criteria are achieved, at of the agents at the time, the human pilots
which point it begins the intercept by were constrained in terms of the kinds of
attempting to achieve a good geometry from
which to fire a long-range missile (LRM).
At some later point the MiG29 detects the
F14 and also then begins an intercept. This tIn real engagements, if one or more of the aircraft
makes it difficult for the F14 to achieve any survive the BVR segment of the scenario, either a
further advantage in intercept geometry, so within-visual range (WVR) engagement - that is, a
it gives up on that, and turns to maximize dogfight - or an air-to-ground attack on the HVU
the rate of closure (and thus to minimize the may then occur. However, these aspects of the
time before the intercept is complete). scenario are not part of BVR tactical air, and are thus

not pursued by the TAS agents.
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tactics they were allowed to use. Under engagements a section (i.e., a coordinated
these circumstances the demonstration pair of planes) must be able to fly together
proceeded successfully, in real-time, and in in formation and execute coordinated
an otherwise unscripted manner. The tactics. In service of this they must be able
resulting behavior was much as described in to communicate with each other, and to be
the typical example above. Feedback from aware of each other's positions. The TAS
Navy personnel in attendance at the agent is now capable of doing this (as
demonstration was uniformly positive, discussed in the next section) to support

Despite this demonstrable success - competent 2-v-I behavior, within the same
and the fact that in numerous subsequent kinds of limits described for 1 -v- I (Jones &
presentations to domain experts and other Laird, 1994; Laird & Jones, 1994).
Navy personnel TAS has consistently In l-v-2 engagements a single aircraft
impressed with its quality of behavior - it must be able to identify and sort out the
must be noted that TAS is still not close to activities of a pair of adversaries who may
covering the full complexity of the domain or may not be flying together as a section
abilities described above, or the interactions (Jones & Laird, 1994). It must be able to
among them. For example, only a subset of work out intercept geometries that take both
the radar modes are used; search and acquire opponents into account - so as, for
in three dimensions is not strong; and only a example, not to be sandwiched between
subset of the possible tactics for patrolling, them. It must also be able to determine
confusing, intercepting, and evading are which of the pair is the primary threat, target
used. Fleshing out these abilities does not the primary threat, and determine when to
look conceptually difficult at this point, just also fire at the secondary threat. For
time consuming, example, if the pair are flying in a

Another dimension of complexity in I- coordinated fashion, then firing a missile at
v-1 BVR tactical air that is not fully one is likely to cause both to beam. It would
addressed at this point by TAS is the space thus be a waste to launch missiles at both
of possible missions that the agents need to under such circumstances. The current TAS
be able to perform. The aggressive bogey agents are also capable of performing
scenarios cover two types of missions competently in such l-v-2 engagements.
(BARCAP-HVU and ATTACK-HVU); In 2-v-2 engagements, many of the
however, there is still a handful of others. same issues come up as in l-v-2 and 2-v-1.
One other mission to which TAS has However, additional capabilities are
recently been extended is a MiGSWEEP. A required to sort the opponents (determining
MiGSWEEP is a sweep by one side's which friendly aircraft has the responsibility
fighters through the other side's territory to for which opponent aircraft), to decide when
clear out a corridor for later aircraft (such as one or both aircraft should launch missiles,
bombers). In addition to the abilities and to decide when to split the single 2-v-2
required for the previous missions, a engagement into two independent 1-v-i
MiGSWEEP requires the ability to fly to engagements (i.e..- to strip). Though work
waypoints, and to break off an intercept and on 2-v-2 has just recently begun, there is
"blow through" an opponent (that is, engage now at least one working example, of a
in a small amount of WVR behavior in order section of TAS agents successfully sorting
to accomplish a high-speed pass of an and firing at another section of TAS agents.
opponent and continue with the planned Once 2-v-2 is completed, larger
flight path). engagements (2-v-N, 4-v-4, N-v-N, etc.)

In scaling up from these 1-v-I will still remain to be covered.
scenarios, the biggest change has been the Other aspects of scale up that are
incorporation of an ability to detect and currently in progress include adding the
manage multiple aircraft. In 2-v-I ability to fly an F18 (to the original F14 and
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the recently added MiG29), and the addition by Soar has turned out to be non-trivial -

of an air intercept control (AIC) agent in an and is currently a topic of intensive
E2 (a specialized radar plane that is similar investigation - workable strategies have
to an AWACS) (Rubinoff & Lehman, 1994). been found for TAS agents to coordinate
The AIC's job is different in a number of their behavior in the presence of all of these
ways from that of a fighter pilot, so goals and their interactions (Jones et al,
stretching TAS to accommodate this new 1994). A second capability is integrating
type of agent should force further information from multiple sources about
generalization of its capabilities, multiple agents (Jones & Laird, 1994). The

sources of information about other agents
Intelligent Capabilities have been expanded from just radar, to also

include radio and vision;2 and the number of
With respect to intelligent capabilities, agents about which information can be

the most significant advance over the represented has been expanded from one up
prototype agents has been the addition to to an arbitrary number. A third capability is
TAS of the ability to maintain episodic communication and coordination among
memories of its engagements, and to use multiple agents (Laird & Jones, 1994).
these memories in reconstructing what it Instead of modeling a group of related
did, why it did what it did, and what else it agents - such as a section of aircraft or a

would have done if the situation had been platoon of tanks - as a single aggregate

slightly different (Johnson, 1994a; Johnson, unit, the behavior of groups is being

1994b). These description and explanation modeui d at the individual platform level.

capabilities are available through an This provides additional flexibility and

interactive debriefing interface, in which Thism-ide sition , but and

questions can be asked via selection from realism -in the simulation, but also

dynamically created menus, and answers are actually do communicate and coordinate

generated in (approximate) English. In

contrast to explanation in most expert among themselves.
systems, where there is a distinct Additional capability investigations are"syspate, salso underway in the areas of learning,
"explanation" system that has direct access

to the "performance" system's knowledge planning, plan recognition and natural

and derivational traces, TAS generates the language. Learning and planning are a

explanations itself based only on (1) what it relatively common part of Soar's repertoire

can remember about what happened and (2) of behaviors in general (Laird &

what it can later reconstruct about what it Rosenbloom, 1990); however, they are not

might have done (and why it might have yet a routine part of TAS's behavior.

done it). This is a process that can be misled Investigations of their use in TAS have

by circumstances, but it is expected to be begun - for example, the debriefing

more like how human pilots would actually capability depends on learning being active

describe and explain their own behavior within certain key portions of the TAS

during post-mission debriefing (though- the agents - but it is too early to comment

psychological and behavioral accuracy of generally on their outcome. In contrast, plan
this has not yet been studied). recognition is now a routine part of TAS's

In addition to these debriefing
capabilities, significant progress has also
been made on incorporating several other 2Tlhe radar, vision, and radio inputs attempt to
capabilities into TAS. One capability is provide TAS with the information a human would
coping with multiple interacting goals. extract from those sources. However, this
Though mapping a forest of interacting information is provided symbolically, and no actual
goals onto the single goal stack maintained visual or audio processing on the part of the agent is

required.
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behavior, but only of a simple, low-level, ad DIS (Schwamb, Koss, & Keirsey, 1994).
hoc variety. For example, when an ModSAF already contains an interface to
opponent turns, a new (hand-coded) task DIS, so it was only necessary to add an
may be selected to interpret whether the interface between Soar and ModSAF. To do
opponent is performing an fpole (as part of a this we have implemented a cockpit
missile launching plan) or a beam (as part of abstraction on top of ModSAF that allows
a missile evasion plan). General plan TAS to focus on behaving like a pilot, while
recognition turns out to be particularly ModSAF simulates vehicles, sensors, and
difficult in the DIS environment because of weapons. TAS is not utilizing ModSAF's
the presence of partial information about owiA pilot behaviors (such as Sweep, CAP,
multiple, flexible, interacting agents. and Fly Route), as programmed into its tasks
However, a more systematic approach based and task frames; however, TAS's piloting
on abstract model tracing (Anderson et al, task has been simplified somewhat by
1990; Ward, 1991) in (multi-agent) world- providing it high-level flight control via a
centered models is being investigated in a ModSAF library function that accepts as
version of TAS, and is showing some parameters a desired altitude, heading, etc.
promise (Tambe & Rosenbloom, 1994). In addition to adding the cockpit abstraction
Finally, an investigation is in progress on (and getting Soar to use it), we have
how to incorporate independently extended the implementation of Soar so as
developed, Soar-based, natural-language to allow multiple independent Soar agents
abilities (Lehman, Lewis, & Newell, within a single process. This has allowed
1991) into TAS (Rubinoff & Lehman, multiple TAS agents to be compiled
1994). In theory, two automated agents together with ModSAF in a single process,3

could communicate without using natural and thus allowed communication between
language; however, to do so can affect how the agents and ModSAF to be mediated
they are perceived by agents that are directly by calling library functions (rather
eavesdropping on them. In the longer run, than through slower interprocess
natural language is also a critical capability communication mechanisms, such as
if automated agents are ever to interact in a sockets).
seamless way with human agents. Natural Given a cockpit abstraction, it turned
language communication will initially be out to be relatively easy to reuse it in
provided between a pair of TAS agents - a support of a low-cost interface for human
fighter and an AIC (in an E2) - with further control of ModSAF aircraft. The Human
deployment hopefully to follow. Instrument Panel (HIP) provides an X-

Windows-based interface to a vehicle's

Infrastructure Capabilities cockpit abstraction (van Lent & Wray,
1994). This enables a human pilot to

With respect to infrastructure, progress perceive graphically-presented sensor
has been made on four topics: (1) integration information and to control the aircraft's
of Soar with the DIS simulation flight, weapons, and sensors at the same
environment; (2) provision of a low-cost level at which they are controlled by TAS
interface for human pilots; (3) knowledge agents. Easily being able to control
acquisition methodology; and (4) ModSAF vehicles at this level of detail, and
documentation tools and methodology, on any workstation, has proven to be quite
These topics are covered in turn here. useful in testing and experimenting with

TAS agents are now able to act as full
participants within the DIS battlefield
simulation environment. The key to this has
been the use of ModSAF 1.0 (Calder et al, 3Soar is currently implemented in C - as is

1993) as an intermediary between Soar and ModSAF - without which this integration would
have been considerably more difficult.
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TAS agents. However, the HIP clearly can't goals, integrating information from multiple
completely replace the functionality of sources about multiple agents,
higher fidelity (and cost) flight simulators. communication and coordination, episodic

With respect to knowledge acquisition, memory, and reconstructive self-description
the most important development has been and self-explanation.
the opening of the WISSARD laboratory at The basic TAS agent is coded within
Oceana Naval Air Station (in Norfolk, VA). Soar via 145 operators, where each operator
The lab contains two high fidelity (dome) corresponds to a task (or goal) at some level
aircraft simulators; two medium fidelity of granularity. In terms of rules, the
aircraft simulators; plus workstations for implementation involves approximately
running ModSAF, TAS, and several 1,500. Most of these rules are responsible
visualization and analysis tools. The for proposing, selecting, and applying the
laboratory has enabled us to add to the operators, but some do perform other tasks
standard knowledge acquisition (such as encoding perceptual input, and
methodologies the ability to watch, tape, and elaborating state descriptions). The
log, engagements among human pilots (both debriefing capability adds another 80
official "subject matter experts", as well as operators, amounting also to approximately
operational pilots), and engagements 1,500 rules. So the combined system
between human pilots and TAS agents. consists of 225 operators and approximately

With respect to documentation, we have 3,000 rules. The natural language
developed substantial portions of a three capabilities that are currently being added
layer hypertext document that links together: utilize an additional 56 operators, and
(1) knowledge about the domain (as approximately 900 rules. Note that these
extracted from books, experts, etc.); (2) a operator and rule counts are all "before
description of the structure and content of learning", as learning can increase both the
TAS; and (3) the actual rules that comprise number of rules and the number of
TAS (Koss & Lehman, 1994). This operators.
documentation has been developed within Beyond the agent itself, progress has
NCSA Mosaic, a distributed, multi-media, also been made on building an infrastructure
hypertext system. It is expected to facilitate to support research and development on
understanding and validation of the intelligent automated agents for tactical air,
knowledge and code embodied in the and beyond.
automated agents. Plans for the coming year include

completing 2v2 BVR tactical air, and
Summary and Future transitioning TAS from tactical air to close

air support (a form of air-to-groundTAS is now capable of performing engagement). We also expect to have

competently in beyond-visual range tactical- pngglening, and pect ion

air scenarios containing up to three working routinely in TAS, and to have

interacting aircraft. Moreover, it can do so limited amounts of natural language also in

while flying two types of aircraft in serviice route us Meal incremal

of three types of missions. It can also routine use. Meanwhile, incremental
participatee type interace pomissions. timprovements are expected to continue onparticipate in interactive post-mission the infrastructure for research and

debriefings about its engagements. developmet.

These various capabilities arise from development.

combining knowledge about the tactical air
domain with a set of "intelligent" abilities
embodied by TAS for knowledge-based
decision making, reactive real-time
interaction, coping with multiple interacting
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Abstract an agent happens to behave realistically in one sce-
nario is no guarantee that the agent will perform

Computer generated battlefield agents need to be properly in other scenarios. In order to gain con-
able to explain the rationales for their actions. fidence in the accuracy of the agent's behavior it
Such explanations make it easier to validate agent is helpful to examine its reasoning processes, and
Lehavior, and can enhance the effectiveness of the compare them against human reasoning.
agents as training devices. This paper describes In order to produce human-like behavior we have
an explanation capability called Debrief that en- focussed on modeling human thought processes
ables agents implemented in Soar to describe and and reasoning, using the Soar cognitive architec-
justify their decisions. Debrief determines the mo- ture [14]. These thought processes are made visi-
tivation for decisions by recalling the context in ble using an explanation capability, called Debrief,
which decisions were made, and determining what that describes and answers questions about the
factors were critical to those decisions. In the pro- agent's actions and decisions. Debrief can also
cess Debrief learns to recognize similar situations point out alternative actions that might have been
where the same decision would be made for the taken, but were rejected. This helps to ensure that
same reasons. Debrief currently being used by the the actions were performed for the right reasons,
TacAir-Soar tactical air agent to explain its ac- and were not chance occurrences.
tions, and is being evaluated for incorporation intoother reactive planning agents. Debrief was inspired by post-flight debriefings in

tactical Lraining. Debriefings are conducted after
training exercises so that instructors and trainees

1 Introduction can understand what went wrong and why, and
draw lessons that can be applied to future en-

The Soar-IFOR project [15] is developing intelli- gagements. Similar capabilities in Debrief make
gent agents that can control tactical aircraft in dis- it easier for people to understand and improve the
tributed battlefield simulations. A key objective performance of simulated agents.
of the project is to endow such simulated agents
with human-like behavior. Human players in the
simulation should not be able to tell which units 2 Objectives and Approach
are controlled by humans and which are controlled
by computer, lest they come to rely on this knowl- The following are the design objectives for Debrief
edge. Simulations can serve as an effective test bed in TacAir-Soar.
for development and evaluation of tactics only ifthe agents realistically employ those tactics. 1. It should describe an engagement from the

agent's perspective, explaining what the
Yet it is difficult to validate through observation agent's objectives where, what actions it took
that agent behavior really is human-like. Behav- to meet those objectives, and its assessment
ior depends upon the agent's goals and situation of the unfolding situation.
assessments, and these can change from moment
to moment. A given action might be appropriate 2. It should accept follow-on questions about
in one situation, and altogether inappropriate in a those actions, objectives, and assessments,
slightly different situation. Therefore the fact that justifying them as appropriate.
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3. In explaining actions it should use a combi- monitoring the reasoning, and experimenting with
nation of media familiar to potential users, changing the situation in various ways, it discov-
including natural language and diagrams. ers the critical factors in the situation that led to

the decision. These results are learned so that
4. These capabilities should be provided without they can be applied to other decisions in simi-

unnecessary impact on the design and imple- lar situations. In effect the agent constructs a
mentation of other agent capabilities, declarative model of its own reasoning through re-

flection. This is analogous to human explanation
5. The explanation capability should not be ape generation--experts often can perform tasks with-

cific to tactical air-to-air combat, but should out being conscious of the rationales underlying
be applicable to a variety of domains, their performance, and must reflect afterwards to

determine what those rationales might have been.The most obvious way to provide such explana-

tions would be to generate English paraphrases of Although Debrief was originally intended for ex-
the rules and rule firing traces used by TacAir- planation in the tactical air-to-air domain, the
Soar. Yet such techniques have proved to be in- implementation is not specific to that domain.
effective for explaining expert system reasoning TacAir-Soar is in the process of being adapted
[4, 16, 3], and are likely to be inappropriate in to handle air-to-ground operations; it is expected
computer generated forces as well. They contain that these changes will little or no impact on De-
too many implementation details, and are too de- brief. Plans are underway to apply Debrief to an

pendent upon the particulars of how knowledge is entirely different domain, namely automated con-

encoded in the system. It is necessary to abstract trol of radar tracking stations in the NASA Deep

away from these details, and focus on the essential Space Network [8, 7].

knowledge underlying the agent's decisions.

Another approach might be to encode the under-
lying knowledge explicitly, either in a declarative
form or as abstract meta-rules [2]. Such an ap-
proach has a number of potential problems. First The following example scenario illustrates how De-
of all, computer generated forces require a great brief is employed. Suppose that the TacAir-Soarvariety of reasoning capabilities, including plan- agent is assigned a Barrier Combat Air Patrol
ning, plan recognition, learning, and geometric (BARCAP) mission, i.e., to search the skies for en-reasoning. The problem solving strategies and do- emy aircraft and intercept them so that they can-main knowledge representations required for many not threaten a high value unit such as an aircraftofin th owlesge a pai resemtatters ofecurrent f r -ancarrier. During the course of the mission the agentsearch. If such knowledge were encoded declara- detects a hostile aircraft. The agent intercepts the
tively, but the agent does not make direct use of it, aircraft, fires a missile at it which destroys it, and
and instead employs procedural rules or codes, the then resumes its patrol.
declarative descriptions will quickly become out of After the engagement Debrief can be used to ask
date as the agent is extended and modified. This is the agent questions. Dialog is conducted via a
especially true for experimental intelligent systems menu-oriented interface. First, the user requests
like TacAir-Soar. Yet if it did reason directly from that Debrief describe what took place during the
declarative representations its performance would engagement; it then gives a step-by-step descrip-
suffer, and the design of the agent would be greatly tion of the mission. If there is any statement in the
affected, in contradiction to point 4 listed above, description that the user has a question about, he
Automated compilation of declarative knowledge or she can button on it with the mouse and request
[13] can help eliminate the performance problems, an elaboration or explanation.
but compilation techniques have not yet been em- Figure 1 shows part of the display during the
ployed in systems that have have as great a variety course of the interaction. The user has selected
of reasoning capabilities as TacAir-Soar does. one of the statements in the description, "I started

Debrief takes a fundamentally different approach using my weapons," and has requested a justifica-
to explanation. In order to determine the ratio- tion for that decision. The explanation for this
nales for an agent's decision, it recalls the situa- step is displayed in the window shown; the origi-
tion in which the decision was taken, and then re- nal description of the mission has almost entirely
plays the agent's tactical reasoning processes. By scrolled off the top of the window. It lists sev-
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of TacAir-Soar. Like all Soar systems, TacAir-
COMW QMWI Soar is divided into problem spaces, each of which

•d 1is responsible for a particular subtask. These
Ists"O problem spaces are organized hierarchically, where

u7fWt nwpU eae lower level problem spaces accomplish goals thattUmbelwu a cetail and
ewboffhamemwnboM*e& are posed in the higher level spaces. The top

level space performs the switch between principal
tbmbtar~pO~firWU.Iuee.l modes of operation, namely accepting mission or-

thsbWmbSa datmwm tmwner ders, flying the mission, and debriefing the mis-
tsbaWvemmacauacter sion.
ROEmnmbiatiaddee
Uw'atmtgma emrntOdei. In order to support debriefing, the mission prob-
IWOMMIlu~ fnYbii, lem spaces are augmented with an event mem-
Oafwbai'UeI ory, which is a record of the events that occurred
RO~wmnaadalur4i
IcAcd hoabhute raoduftewRolbe. during the mission. A set of operators and pro-

Iwo*"at tlbaddelf wvW ROE E2m ductions monitor TacAir-Soar's problem solvingROE waz eemw• FdtkieID femthe E2C=Wn
IhadM mvdpodvelDfrtmwtE2C=d state during the execution of the mission in or-
thwbaewueyabfadlami der to construct this memory. A separate work-
decumdc poddtvelDwomaiuahm ing memory specification indicates which objects

in Soar's internal working memory should be mon-
it itored for state changes. After the engagement De-

CbndIue brief retrieves information about the engagement
from the event memory and uses it to describe
and explain the mission. The working memory

Figure 1: The Debrief interaction window specification als' elps to determine how to re-
call episodes fro.. the event memory and analyze
them and what info--mation about those episodes

eral reasons why the agent elected to use weapons is presented to thix iser.
against the bogey: the agent had radar contactwith the bogey, it was known to be hostile, the The debriefing itself is performed within the Dc-
rules of engagement (ROE) were satisfied, and the brief problem space, which alternates betweenrulesofgengagement (ROE) wrayperepsatisfied, torye prompting the user for questions via the Prompt-agent had already planned an intercept trajectory for-Question problem space, and answering them
for closing in on the bogey. It also lists alternative via-theGtiAn problem space . Genem
actions that it might have taken but did not; for via the Generate-Answer problem space. Gener-
example, if ROE had not been satisfied, the agent ating answers involves recalling states in which
would have closed in on the bogey, but would have events or the beliefs that the agent held at the
refrained from firing weapons at it. time, and then presenting the results to the user.
It is also possible to investigate why the agent The natural language generation capability within
reached particular conclusions during the course of the presentation subsystem is also used in the
the engagement. For example, since the conclusion Prompt-for-Question problem space to construct
that ROE was achieved was crucial to the agent's menus of events and decisions that the user may
decision to employ weapons, it would be useful to select from when forming a question.
find out why the agent reached this conclusion. The key aspects of each of these capabilities within
This can be accomplished by selecting a conclu- Debrief will be described in more detail below.
sion and asking a follow-up question about it. In
the window in the figure the conclusion "ROE was
achieved' has been selected with the mouse, and
an explanation for why this conclusion was made 5 Inputing Questions
appears at the bottom of the figure. Analysis of videotapes of mock post-flight debrief-

ings indicates that a variety of types of questions
4 Architecture of Debrief can arise during the course of a debriefing. The

question input capability is designed to enable
Figure 2 shows the overall architecture of De- users to pose many of these types of questions,
brief, and how Debrief fits into the architecture without making users type their questions in En-
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Top Problem Space

t ecali State valuate Decision valuate Belief

Figure 2: The architecture of Debrief within TacAir-Soar

glish and requiring Debrief to understand natural Subsequent questions can be formed in the same
language input, manner, or by selecting fragments of text with the
Questions were categorized into major semantic mouse, using a technique similar to that employed
types, following the methodology that is com- by Moore and Swartout [12]. In the latter case
mon in question-answering systems [10]. Ques- the question is taken to refer to the event or belief
tion types currently supported include: Describe- described by that fragment of text.
Event-describe an action or event and its cir-
cumstances; Explain-Action--explain why the
agent performed a particular action; Explain- 6 Memory and Recall
Conclusion--explain why the agent drew a partic-
ular conclusion; and Explain-Belief-explain why Event memory in Debrief takes advantage of the
the agent believed that a particular fact was true. fact that the major problem solving steps in
Instead of inferring the question type from the Soar systems, namely problem spaces and opera-
user's input, Debrief requires that the user ex- tors, are represented explicitly in working memory.
plicitly select .a question type from a menu. This Events and decisions are recorded by productions
avoids the problems of interpreting poorly articu- that check for particular operators being applied.
lated questions, but does require that the user un- All major decisions within TacAir-Soar are imple-
derstand the meaning of the question types, and mented as operators, as are situation assessments.
to understand the distinction being made between For example, the decision to use weapons is per-
actions and conclusions, formed by an operator called Employ-Weapons, so
Each question applies to a specific event, decision, a production was added to TacAir-Soar that fires
or belief. These can be selected via the inter- whenever that operator is applied. An event token
face. Initially when the user selects a question is then added to the event memory indicating the
type Debrief lists the events in its event memory operator that was applied and the problem space
that are of the appropriate type for the question. in which it was applied.
The user may then select an element from this list. Whenever an event is added to the event memory,

TacAir-Soar's working memory is checked to see if
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there have been any changes since the last event. ing state changes with events. During debrief-
Soar's memory is organized as a collection of oh- ing the Recall-State problem space makes use of
jects with attributes and values. Debrief monitors these chunks to reconstruct the state in which a
a subset of these attributes, and adds a record to given event occurs. It proposes a range of possi-
the event memory whenever a change in values oc- ble state changes, and if recognition chunks fire
curs. Debrief then knows that the state change was as-

The decision of what state information record de- sociated with the event. Once Recall-State has
pends upon what information is required during reconstructed the working memory state associ-
debriefing to explain decisions. Recording all state ated with an event a new chunk is built associ-
information would be costly in a complex system ating the event with the complete state descrip-
such as TacAir-Soar, and proves to be unneces- tion. Then if subsequent questions refer back to
sary. The working memory specification deter- the same event the chunk leads to the immediate

mines what information should be monitored and recall of the working memory state.
recorded. For each attribute of interest the specifi- During the engagement TacAir-Soar's working
cation indicates what types of values the attribute memory size stays relatively constant, but its pro-
can take, whether or not an attribute can as- duction memory constantly grows.as new chunks
sume multiple values at once, and how those values are built. One might therefore be concerned
change over time. If the values of the attributes that the additional productions would lead to de-
are themselves complex objects with attributes, creased performance. Fortunately, studies have
they are specified in the same way. shown that Soar systems can be run with as many

It was argued in Section 2 that duplicate represen- as a million chunks in them without signficant
tations of knowledge in declarative and procedural slowdown[5].' This number of chunks is far greater
form can lead to maintenance problems. However, than Debrief has yet been required to produce.

this is not a serious problem in the case of the
working memory specification because the spec-
ification only describes the structure of working 7 Explaining Decisions and Beliefs
memory, not how that working memory is con-
structed and used. It is therefore relatively im- Once the circumstances surrounding a decision has
mune to modifications to the TacAir-Soar agent's been recalled, it is then possible for Debrief to de-
rule base. Additionally, Debrief can optionally be termine what aspects of those circumstances led to
made to check whenever the working memory state the decision. Figure 3 shows the problem spaces
disagrees with the specification, and warn the de- that are involved in this process. The first step is
velopers that this is the case. The advantage is to replay the original decision, to verify that cir-
that Debrief can be incorporated into a new Soar cumstances leading to the decision have been cor-
system simply by identifying the operators in that rectly recalled. In essence Debrief is performing
system that are to be explained and constructing a kind of 'what-if" simulation internal to Soar,
a specification for the system's working memory. checking to see what TacAir-Soar would do if it

were in the recalled situation. Interaction between
It is important that the event and state recording TacAir-Soar and ModSAF is disallowed, so that

processes not add significantly to worng memory this what-if simulation does not have an unin-
size, since this could degrade the run-ti•me perfor- tended effect on the ModSAF vehicle that TacAir-
mance of TacAir-Soar. Therefore Lebrief makes Soar is controlling.
use of Soar's learning mechanism, called chunk-
ing, in order to reduce working memory load. For example, in the case of the decision to use
Chunking creates new production rules that Soar weapons described above, Debrief recalls the op-
can then use in subsequent problem solving. De- erator that was applied (Employ-Weapons), the
brief builds so-called recognition chunks during problem space in which it was applied (Intercept),
the course of the engagement in order to facili- and the state in which it is applied (reconstructed
tate the recall of state information. A recogni- by Recall-State). This information is passed to the
tion chunk will fire whenever a situation that Soar Evaluate-Decision problem space, which in turn
has encountered before arises again, enabling Soar passes control to a problem space called Test Oper-
to recognize that the situation has been encoun- ator Applicability that sets up the Intercept prob-
tered before. Debrief continually builds recog- lem space so that it can be reinvoked in the re-
nition chunks during the engagement, associat- 'Robert Doorenbos, personal communication.
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the process. These chunks summarize the condi-
tions in the recalled state that caused the Employ-
Weapons operator to be selected. Implementa-

~uate Decision tion details internal to the Intercept problem space

tomatically filtered out by the chunking process.
The details of how this filtering occurs is beyond
the scope of this paper, but please see [9].

Once it is determined that the recalled operator
Dtermdne Establish is applicable, the next step is to determine what
Cr'"itriA would happen if the situation were slightly differ-

ent from what was recalled. This helps to iden-
tify what the critical factors are in the state, and
why they are critical. This analysis is performed

Tesi Operator in the Determine Applicability Criteria problem
A•pplicability space. This space repeatedly deletes elementslbfrom the recalled state description and checks to

see whether the originally selected operator would
be applied. If the state change does not affect
the applicability the the operator, a chunk pre-
viously built by Test-Operator-Applicability will

aissionSPS] fire, recognizing that the operator is still applica-

ble. If the state change is significant, the chunk
will not fire and what-if simulation will again
be performed in the Test-Operator-Applicability

Figure 3: Problem spaces for evaluating decisions space. If it is found that a different operator is

selected, the name of the operator is returned to
Determine-Applicability-Criteria, which then will

called state. Then control passes to the Inter- perform further what-if analyses to determine why
cept problem space. If Intercept again selects the that operator was selected. Finally, the results
Employ-Weapons operator, Debrief knows that of these analyses are returned as sets of signif-
the recalled state description contains the infor- icant attribute values associated with each se-
mation that motivated the original application of lected operator. This is yet another point where
Employ-Weapons. Test Operator Applicability Soar's learning mechanism is used to advantage.
then immediately terminates the what-if simula- The next time TacAir-Soar applies the Employ-
tion and returns to Evaluate-Decision an indica.- Weapons operator in a similar situation and De-
tion that the expected operator was in fact ap- brief is asked a question about it, it will immedi-
plied. ately be able to recognize the similarity of the situ-

Reconsidering the original decision made during ation and produce an explanation, without having
engagement, is necessary for two reasons. First, it to perform any what-if simulation at all.
is possible that the recalled state does not corre- Explaining beliefs involves many of the same
spond exactly to the situation in which. the de- mechanisms that are used to evaluate decisions.
cision was originally made. This could happen Debrief searches backwards through the event his-
if the TacAir-Soar operator was modifying work- tory for the first event whose associated state in-
ing memory at the same time that working mem- cludes the belief in question. Then Debrief re-
ory was being recorded. To deal with this case, moves the belief from the state description, and
a problem space called Establish-Applicability is performs a what-if simulation of the operator as-
employed to modify the recalled state by compar- sociated with the event. If during simulation the
ing it against the state associated with the im- belief is added back to the state, that indicates
mediately preceding event and trying to construct that the operator was responsible for asserting the
state intermediate between the two in which the belief into Soar's working memory. Determine-
operator can fire. But even if the right state was Applicability-Criteria can then be used to deter-
recalled it is important to reconsider the deci- mine why that particular operator was selected.
sion because it causes chunks to be built during
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8 Presenting Explanations ever, it is assigned a lower degree of confidence-

just because Debrief tells the user some fact does

Once the necessary analysis is performed by not mean that the user then knows it. If the user
Debrief, information is presented to the user. requests an elaboration about a particular event,
This presentation is performed via a hierarchi- information assigned to the user model with a low
cal presentation planning process, initiated in the degree of confidence will still be presented.
Present problem space shown in Figure 2. The
planning process is similar to that of other multi- 8.2 Assigning information to media
media generation systems [6, 1], although its abil-
ity to coordinate text and graphics is somewhat Once information has been selected for presenta-
limited. tion, Debrief must then determine what presenta-

tion media to use. It currently has knowledge of
8.1 Selecting information to present two presentation media: natural language and a

graphical display of aircraft positions in 3-space.
The first step in the presentation process is select- Each presentation medium is specified in terms
ing what information should be presented. If the of the types of information it is able to present:
question that was asked involved evaluating a de- the graphical display is limited in its expressibil-
cision or belief, this step is. trivial: every factor ity, whereas natural language is unlimited. Each
that was found to lead to the decision or belief piece of information is then allocated to the avail-
in question is presented. If the user requested a able media depending upon the type of presenta-
summary of an event, however, the case is more tion being given. If a summary description is be-
complicated. Debrief has a wealth of information ing presented, only one medium will be selected,
available about every event, in the form of the and graphical media will be preferred over textual
state information associated with the event and media. Otherwise all available media will be used.
any substeps of the event. It must therefore de-
termine which pieces of information are relevant. 8.2.1 Generating the presentations

Relevance is determined by constructing and
maintaining a model of what the user is expected At the present time the only medium Debrief can
to know about the engagement. This is deter- employ is natural language, because the interface
mined initially through a short questionnaire that that will allow Debrief to control the display pro-
the user fills out when he or she first sits down with grammatically is not yet complete. As soon as the
the system. The user indicates the level of famil- interface is complete, it will be possible for De-
iarity with the mission orders, and with what actu- brief to start presenting the information that it
ally transpired during the engagement. Depending is already able to assign to that medium. In the
upon the answers to these questions Debrief will mean time, the presentations are in natural Ian-
copy more or leas information from TacAir-Soar's guage instead. Natural language is produced us-
working memory into the user model. Later on ing a simple sentence generator loosely based on
when Debrief is planning a summary of a given Functional Unification Grammar [11].
event, it compares the recalled state associated
with the event against the user model. If corre-
sponding information is already in the user model 9 Status and Evaluation
then it is not presented.

If a piece of information is not present in the user The Debrief system as it currently stands com-
model, Debrief next checks whether it is readily in- prises thirteen problem spaces, implemented us-
ferrable from other information that has already ing eighty Soar operators and 1556 productions.
been selected for presentation. In particular, De- It currently can describe and/or explain a total of
brief has knowledge about what facts are read- 70 types of events. The natural language gener-
ily inferrable as consequences of particular events. ation component has a vocabulary of 240 words
Any such facts are omitted from the explanation. and phrases. It has been used to describe and ex-

After each event is described to the user, the user plain events occurring in 1 v 1 engagements, I v 2

model is updated. All information that has been engagements, and 2 v I engagements.

presented, or which is known to be inferrable from Formative evaluations of Debrief explanations
what was presented, is added to the model. How- have been performed with Navy Reserve fighter
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pilots. These evaluations confirmed that expla- [5] R.B. Doorenbos. Matching 100,000 learned
nations are extremely helpful for validating the rules. In Proceedings of the National Confer-
agent's performance, and building confidence in ence on Artificial Intelligence, pages 290-296,
it. They also underscored the importance of hay- Washington, DC, August 1993. AAAI.
ing the agent justify its beliefs-the evaluators fre-
quently wanted to ask questions about assertions [6] S.K. Feiner and K.R. McKeown. Coordinat-
made by Debrief during the course of the explana- ing text and graphics in explanation genera-
tion. This experience motivated the work on in- tion. In Proceedings of the Eight National
corporating the Explain-Belief question type into Conference on Artificial Intelligence, pages
Debrief. Further evaluations and demonstrations 442-449, Anaheim, CA, August 1990. MIT
are planned for later this year. Pres.
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10 Acknowledgements tive model of skill acquisition. In Proceedings
of the World Conference of Artificial Intel-

This research was supported under subcontract to ligence in Education, pages 273-281, Edin-
the University of Southern California Information burgh, Scotland, 1993.
Sciences Institute from the University of Michigan,
as part of contract N00014-92-K-2015 from the [8] R.W. Hill and W.L. Johnson. Situated plan

Advanced Systems Technology Office (ASTO) of attribution for intelligent tutoring. In Pro-

the Advanced Research Projects Agency (ARPA) ceedings of the National Conference on Arti-

and the Naval Research Laboratory (NRL). The ficial Intelligence, Seattle, Washington, 1994.

author wishes to thank the following people for to appear.

their helpful comments and insights: Yolanda (91 W.L. Johnson. Agents that learn to ex-
Gil, Paul Rosenbloom, William Swartout, Milind plain themselves. In Proceedings of the Na-
Tambe, and Lorna Zorman of USC / ISI; Bob tional Conference on Artificial Intelligence,
Richards of BMH Inc.; Doug Holmes of ISX, Inc.; page forthcoming, Seattle, WA, August 1994.
and Richard Lewis of Princeton University. Karl AAAI.
Schwamb contributed substantially to the devel-
opment of the Debrief user interface. [10] W.G. Lehnert. The Process of Question An-

suwering. Lawrence Erlbaum Associates, Hills-
dale, NJ, 1978.

References [11] K.R. McKeown and M. Elhadad. A Con-

trastive Evaluation of Functional Unification
[1] Y. Arens, E.H. Hovy, and M. Vossers. On Grammar for Surface Language Generation:

the knowledge underlying multimedia presen- A Case Study in the Choice of Connectives,
tations. In M. Maybury, editor, Intelligent pages 351-392. Kluwer Academic Publishers,
Multimedia Interfaces. AAAI Press, 1993. to Norwell, MA, 1991.
appear.

[121 J.D. Moore and W.R. Swartout. Pointing: A
[2] W.J. Clancey. The advantages of abstract way toward explanation dialog. In Proceed-

control knowledge in expert system design. ings of the Eighth National Conference on Ar-
In Proceedings of the National Conference on tificial Intelligence, pages 457-464, Anaheim,
Artificial Intelligence, pages 74-78, Washing- CA, August 1990. MIT Press.
ton, DC, August 1983. [13] R. Neches, W.R. Swartout, and J.D. Moore.

[3] W.J. Clancey. The epistemology of a rule- Enhanced maintenance and explanation of
based expert system: A framework for expla- expert systems through explicit models of
nation. Artificial Intelligence, 20(3):215-251, their development. IEEE Transactions on
1983. Software Engineering, SE-11(11):1337-1351,

[4] R. Davis. Applications of Meta-Level Knowl- 1985.

edge to the Construction, Maintenance, and [14] A. Newell. Unified Theories of Cognition.
Use of Large Knowledge Bases. PhD thesis, Harvard University Press, Cambridge, MA,
Stanford University, 1976. 1990.

28



[15] P.S. Rosenbloom, W.L. Johnson, R.M. Jones,
F. Koss, J.E. Laird, J.F. Lehman, R. Rubi-
noff, K.B. Schwamb, and M. Tambe. Intel-
ligent automated agents for tactical air sim-
ulation: A progress report. In Proceedings
of the Fourth Conference on Computer Gen-
erated Forces and Behavioral Representation,
Orlando, FL, May 1994. Institute for Sim-
ulation and Training, University of Central
Florida.

[16] W.R. Swartout and J.D. Moore. Explanation
in second generation expert systems. In J.-
M. David, J.-P. Krivine, and R. Simmons.,
editors, Second Generation Ezpert Systems.
Springer-Verlag, 1993. To appear.

Biography

W. Lewis Johnson is a research assistant professor
is a project leader at the University of Southern
California Information Sciences Institute, and a
research assistant professor in the USC Depart-
ment of Computer Science. Dr. Johnson received
his A.B. degree in Linguistics in 1978 from Prince-
ton University, and his M.Phil. and Ph.D. degrees
in Computer Science from Yale University in 1980
and 1985, respectively. He is interested in apply-
ing artificial intelligence techniques in the areas of
computer-based training and software engineering.
His current projects are developing tools that au-
tomate the generation of software documentation,
and that explain the problem solving of intelligent
agents.

29



Agents that Learn to Explain Themselves

W. Lewis Johnson
USC / Information Sciences Institute

4670 Admiralty Way
Marina del Rey, CA 90292-6895

johnsonQisi.edu

Abstract Swartout & Moore 1993; Clancey 1983b). They con-
tain too many implementation details, and lack in-Incte ant artihcial agents ioeed to be mst formation about the domain and about rationales for

ereiforn and justify ther rations. They must the design of the system. More advanced explanationtherefore understand the rationales for their own
actions. is paper describes a technique for techniques encode domain knowledge and problem-
acquiring this understanding, implemented in a solving strategies and employ them in problem solv-
multimedia explanation system. The system do- ing either as metarules (Clancey 198L) or in com-
termines the motivation for a decision by recall- piled form (Neches, Swartout, & Moore 1985). In the
ing the situation in which the decision was made, computer-generated forces domain, however, problem-
and replaying the decision under vaZiaAt$ Of the solving strategies and domain knowledge representa-
original situation. Through experimentation the tions are matters of current research. An intelligent
agent i able to discover what factore led to the agent in such a domain must integrate capabilities of
decisions, and what alternatives might have been perception, reactive problem solving, planning, plan
chosen had the situation been slightly diferent.
The agent learns to recognize similar situations recognition, learning, geometric reasoning and visual-
where the same decision would be made for the ization, among others, all under severe real-time con-
same reasons. This approach is implemented in straints. It is difficult to apply meta-level or compila-
an artificial fighter pilot that can explain the moo- tion approaches in such a way that all of these require-
tivations for its actions, situation assesmients, ments can be met at once.
and beliefs. This paper describes a system called Debrief that

takes a different approach to explanation. Explana-
Introduction tions are constructed after the fact by recalling the

Intelligent artificial agents need to be able to provide situation in which a decision *as made, reconsidering
explanations and justifications for the actions that they the decision, and through experimentation determin
take. This is especially true for computer-generated ing what factors were critical for the decision. These
forces, i.e., computer agents that operate within bat- factors are critical in the sense that if they were not
tlefield simulations. Such simulations are expected to present, the outcome of the decision procem would
have an increasingly important role in the evaluation have been different. Details of the agent's implementa-
of missions, tactics, doctrines, and new wapons s- tion, such as which individual rules applied in making
tems, and in training (Jones 1993). Validati-n of such the decision, are automatically filtered out. It is not
forces is critical-they should behave as humans would necessary to maintain a complete trace of rule firings
in similar cirnumstances. Yet it is difficult to val- in order to produce explanations. The relationships
idate behavior through external observation; behav- between situational factors and decisions are learned
ior depends upon the agent's assessment of the situa- so that they can be applied to similar decisions.
tion and its changing goals from moment to moment. This approach of basing explanations on abstract as-
Trainees can greatly benefit from automated forces sociations between decisions and situational factors has
that can explain their actions, so that the trainees can similarities to the REX system (Wick & Thompson
learn bow experts behave in various situations. Po- 1989). But while REX requires one to create a sep-
tential users of computer-generated forces therefore at- arate knowledge base to support explanation, Debrief
tach great importance to explanation, just as potential automatically learns much of what it needs to know
user of computer-based medical consultation systems to generate explanations. The approach is related to
do (Teach & Shortlife 1984). techniques for acquiring domain models through ex-

Explanations based on traces of rule firings or para- perimentation (Gil 1993), except that the agent learns
phrases of rules tend not to be succemful (Davis 1976; to model not the external world, but itself.
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Figure 1: Part of a an event summary F,0-

Debrief is implemented as part of the TacAir-Soar
fighter pilot simulation (Jones et aL 1993). Debrief
can describe and justify decisions using a combination Figure 2: Explanations of the agent's decisions
of natural language and diagrams. It is written in a
domain-independent fashion so that it can be read-
ily incorporated into other intelligent systems. Cur- Questions are entered through a window interface, by
rent plans call for incorporating it into the REACT selecting a type of question and pointing to the event or
system, an intelligent assistant for operators of NASA assertion that the question refers to. The first question
Deep Space Network ground tracking stations (Hill & selected is of type Describe-Event, i.e., describe some
Johnson 1994). event that took place during the engagement; the event

chosen is the entire mission. Debrief then generates a
An Example summary of what took place during the mission. The

Consider the following scenario. A fighter is assigned user is free to select statements in the summary and
"a Combat Air Patrol (CAP) mission, i.e., it should fly ask follow-on questions about them.
"a loop pattern, scanning for enemy aircraft. During Figure 1 shows part of a typical mission summary.
the mission a bogey (an unknown aircraft) is spotted One of the statements in the summary, "I startedusn
on the radar. The E2C, an aircraft whose purpose my weapons," has been selected by the, user, so that
is to scan the airspace and provide information to the a follow-on question may be asked about it. Figure 2
fighters, confirms that the bogey is hostile. The fighter shows the display at a later point in the dialog, after
closes in on the bogey, fires a missile which destroys the follow-on questions have been asked. First, a ques-
bogey, and then resumes its patrol. tion of type Explain-Action was asked of the decision

After each mission it is customary to debrief the pi- to employ weapons, i.e., explain why the agent chose
lot. The pilot is asked to describe the engagement to perform this action. The explanation appears in the
from his perspective, and explain key decisions along figure, beginning with the sentence "I started using my
the way. The pilot must justify his assessments of the weapons because the intercept geometry was selected
situation, e.g., why the bogey was considered a threat. and...! Debrief also lists an action that it did not take,

TacAir-Soar is able to simulate pilots executing mis- but might have taken under slightly different circum-
sions such as this, and Debrief is able to answer ques- stances: flying toward the bogey to decrease distance.
tions about them. TacAir-Soar controls a simulation One can see that the agent's actions are motivated
environment called ModSAF (Calder et al. 1993) that largely by previous assessments and decisions. The
simulates the behavior of military platforms. TacAir- bottom of Figure 2 shows the answer to a follow-on
Soar receives information from ModSAF about aircraft question relating to one of those assessments, namely
status and radar information, and issues commands to "ROE was achieved,"'1 Debrief lists the following fac-
fly the simulated aircraft and employ weapons. After
an engagement users can interact with Debrief to ask 'ROE stands for Rules of Engagement, Le., the condi-
questions about the engagement. tions under which the lighter is authorized to engage the

The following is a typical interaction with Debrief. enemy.
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tors: the bogey was known to be hostile (i.e., a ing sections describe the system components involved
"bandit"), the bogey was identified through electronic in determining motivations for decisions and beliefs;
means and confirmation of the identification was ob- other parts of the system are described in (Johnson
tained from the E2C. 1994).

In order to answer such questions, Debrief does the
following. First, it recalls the events in question and Memory and Recall
the situations in which the events took place. When In order for Memo ry and R ecailummarising events, it select. information about the it must be Debrief to describe and explain decisions,

intemedatedate an suevets tat houd b pre itmus beable to recall the decisions and the situa-intemediate states and subevents that should be pae- tions in which they occurred. In order words, the agentsented, selects appropriate media for presentation of requires an episodic memory. Debrief includes produc-

this information (the graphical display and/or natu- tions and operator that execute during the problem

ral language), and then generates the presentations. song and oper th recute durin formatiol ,

To determine what factors in the situation led to the solving proem in order to record episodic information,
actionand a problem space called Recall-State that recon-

problem solver in the recalled situation, and observes structs states usng this episodic information.
what actions the problem solver takes. The situation The choice of what episodic information to record
is then repeatedly and systematically modified, and is determined by a specification of the agent's working
the effects on the problem solver's decisions are ob- memory state. This specification identifies the statethrved. Beieff s ote plem sovrecisins are on attributes that are relevant for explanation, and iden-
served. Beliefs are explained by r the situation tifles their properties, e.g., their cardinality and signa-
in which the beliefs arose, determining what decisions ture, and how the attribute values may change during
caused the beliefs to be asserted, and determining what prbe sovn.IodrtoalyD rifoanwfactors were responsible for the decisions. problem solving. In order to apply Debrief to a new

problem solver, it is necessary to supply such a specifi-

Implementation Concerns cation for the contents of the problem solver's working
memory, and indicate which operators implement de-

Debrief is implemented in Soar, a problem-solving ar- cisions what should be explainable. However, it is not
chitecture that implements a theory of human cogni- necessary to specify how the problem solver uses its
tion(Newell 1990). Problems in Soar are represented working memory in making decisions-that is deter-
as goals, and are solved within problem spaces. Each mined by Debrief automatically.
problem space consists of a state, represented as a set When the problem solver applies an operator that
of attribute-value pairs, and a set of operators. All pro- as marked as explainable, Debrief records the operator
cessing in Soar, including applying operators, propos- application in a list of events that took place during
ing problem spaces, and constructing states, is per- the problem solving. It also records all attribute values
formed by productions. During problem solving Soar that have changed since the last problem solving event
repeatedly selects and applies operators to the state. that was recorded.
When Soar is unable to make progress, it creates a new Debrief then builds chunks that associate the state
subgoal and problem space to determine how to pro- changes with the problem solving event. Once these
ceed. Results from these subspaces are saved by Soar's chunks are built, the state changes can be deleted from
chunking mechanism as new productions, which can be working memory, because the chunks are sufficient to
applied to similar situations. enable Debrief to recall the working memory state.

The explanation techniques employed in Debrief are During explanation, when Debrief needs to recall the
not Soar-specific; however, they do take advantage of state in which a problem solving event occurred, it
certain features of Soar. invokes the Recall-State problem space. This space
"* The explicit problem space representation enables reconstructs the state by proposing possible attribute

Debrief to monitor problem solving when construct- values; the chunks built previously fire, selecting the
ing explanations. value that was associated with the event. Recall-State

"* Since Soar applications are implemented in produc- aggregates these values into a copy of the state at the
tion rules, it is fairly straightforward to add new time of the original event, and returns it. This result
rules for explanation-related processing. is chunked as well, enabling Debrief immediately to re-

call the state associated with the event should it need"* Learning enables Debrief to reuse the results of pre- to refer back to it in the future. This process is an
vious explanation processing, and build up knowl- instance of data chunking, a common mechanism for
edge about the application domain. knowledge-level learning in Soar systems (Rosenbloom,
The current implementation of Debrief consists of Laird, & Newell 1987).

thirteen Soar problem spaces. Two are responsible for Debrief thus makes extensive use of Soar's long term
inputing questions from the user, three recall events memory, i.e., chunks, in constructing its episodic mem-
and states from memory, four determine the motive- ory. In a typical TacAir-Soar run several hundred such
tions for actions and beliefs, three generate presenta- chunks are created. This is more economical than sim-
tions, and one provides top-level control. Toe follow- ply recording a trace'of production firings, since over
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is useful because it causes chunks to be built that fa-
Detantim cilitate subsequent analysis.

APVW A 4_ý cif --I-l After a state has been found in which the recalled
operator is applicable, the next step is to determine
applicability criteria, i.e., identify what attributes of
'he state are responsible for the operator being se-

Tst-Op ot lected. This also involves applying the Test-Operator-
Applicability operator to construct mental simulations.

Mental simulation

Given the problem space Intercept, the recalled state,
the operator Employ-Weapons, and the decision Start-
event(Employ-Weapons), Test-Operator-Applicability
operates as follows. It creates an instance of the In-
tercept problem space as a subspace, and assigns as its

Figure 3: The process of evaluating decisions state a copy of the recalled state. The working memory
specification described above is helpful here: it deter-
mines which attributes have to be copied. This state

6000 productions fire in a typical TacAir-Soar run. is marked as a simulation state, which activates a set
Since Soar has been shown be able to handle memories of productions responsible for monitoring mental sim-
containing hundreds of thousands of chunks (Dooren- ulations. Test-Operator-Applicability copies into the
boo 1993), there should be little difficulty in scaling up simulation state the event and the category of decision
to more complex problem solving applications, being evaluated. There are three such categories: per-

ceptions, which recognize and register some external

Explaining Actions and Conclusions stimulus, conclusions, which reason about the situa-
tion and draw inferences from it, and actions, which

Suppose that the user requests the motivation for the are operations that have some effect on the external
action "I started using my weapons." Debrief recalls world. Employ-Weapons is thus an action. The In-
the type of event involved, operator that was applied, tercept problem space is disconnected from external
the problem space in which it was applied, and the sensors and effectors (the ModSAF simulator), so that
problem solving state. In this case the event type is mental simulation can be freely performed. Execution
Start-Event, i.e., the beginning of an operator appli- then begins in the problem space. The first operator
cation, the operator is named Employ-Weapons, and that is selected is Employ-Weapbns. The monitoring
the problem space is named Intercept. The situation productions recognize this as the desired operator, re-
was one where the agent had decided to intercept the turn a flag to the parent state indicating that the de-
bogey, and had just decided what path to follow in per- sized event was observed, and the mental simulation is
forming the intercept. (called the intercept geometry). terminated. If a different operator or event had been

Analysis of recalled events such as this proceeds as selected instead, Debrief would be checked to see if
shown if Figure 3. The first step, testing applicabil- it is of the same category as the expected operator,
ity, verifies that TacAir-Soar would select an Employ- i.e., another action. If not, simulation is permitt -d to
Weapons operator in the recalled state. An operator continue; otherwise simulation is terminated and the
called Test-Operator-Applicability performs the veri- a description of the operator that applied instead is
fication, by setting up a "mental simulation! of the returned.
original decision, and monitoring it to se what opera- Whenever a result is returned from mental simula-
tors are selecteds tion, a chunk is created. Such chunks may then be

TI6 initial test of operator applicability in impor- applicable to other situations, making further men-
tant for the following reasons. State changes are not tal simulation unnecessary. Figure 4 shows the chunk
recorded in episodic memory until the operator has that is formed when Debrief simulates the selection of
already been seaected. The operator might therefore the Employ-Weapons operator. The conditions of the
modify the state before Debrief has a chance to save chunk appear before the symbol -4 and actions follow.
it, making the operator inapplicable. This is not a Variables are symbols surrounded by angle brackets,
problem in the case of Employ-Weapons, but if it were and attributes are preceded by a carat (A). The condi-
Debrief would attempt to establish applicability, which tions include the expected operator, Employ-Weapons,
involves recalling the state immediately preceding the the problem space, Intercept, and properties of the
state of the event, and trying to find an interpolationi state, all properties of the bogey. If the operator is
of the two states in which the operator would be We. found to be inapplicable, a different chunk is produced,
lected. But even when recalling the precise problem that indicates which operator is selected instead of the
solving state is not r problem, verifying applicability expected one.
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(sp chuznk-230 :chunk Since the state representations are hierarchically orga-
(goal <g1> 'operator <o1> -state <91>) nized, the significant attributes are found quickly.
(<ol> "ame tUst-operator-applicability If chunking were not taking place, Debrief would be

"exected-operator .mploy-weapoas performing a long series of mental simulations, most of
"eipected-step *none* which would not yield much useful information. But

"problem-space intercept) the chunks that are created help to ensure that vir-
(<el> "simulated-stat. Cr1>) tually every mental simulation uncovers a significant
(<r1> -local-state <10>) attribute, for the following reason. Subgoals are cre-
(11> 'bogey 0b0>) ated in Soar only when impasses occur. Test-Operator-
(<bl> "intantion known-hosti1e Applicability instantiates the mental simulation prob-"roe-achiewvd *yes* lem space because it tries to determine whether the

"Iatercept-geometry-selected *yes* recalled operator is applicable, is unable to do so, and"contact *yes*) reaches an impasse. When chunks such as the one in
(<31> "primary-threat <bl>) Figure 4 fire, they assert that the operator is appli-

-> cable, so no impasse occurs. Mental simulation thus
(<*I> -applicable-oporator employ-weapons)) occurs only in situations that fail to match the chunks

that have been built so far. In the case of the Employ-
Figure 4: An example chunk Weapons operator, a total of seven mental simulations

of variant states are required: two to determine that
the bogey is relevant, and five to identify the bogey's

These chunks built during mental simulation have relevant attributes.
an important feature-they omit the details of how the Furthermore, even these mental simulations become
operator and problem space involved is implemented. unnecessary as Debrief gains experience explaining
This is an inherent feature of the chunking process, missions. Suppose that Debrief is asked to explain a
which traces the results of problem solving in a prob- different Employ-Weapons event. Since most of the
lem space back to elements of the supergoal problem significant features in the situation of this new event
space state. In this case the state recalled from episodic are likely to be similar to the significant features of the
memory is the part of the supergoal problem space previous situation, the chunks built from the previous
state, so elements of the recalled state go into the left mental simulations will fire. Mental simulation is re-
hand side of the chunk. quired for the situational features that are different, or

if the operator was selected for different reasons.
Determining the cause for decisions Two kinds of chunks are built when Determine-
At this point it would be useful to examine the chunks Applicability-Criteria returns its results. One type
built during mental simulation in order to proceed to identifies all of the significant features in the situa-
generate the explanation. Unfortunately, productions tion in which the decision was made. The other type
in a Soar system are not inspectable within Soar. This identifies an operator that might have applied instead
limitation in the Soar architecture is deliberate, reflect- of the expected operator, and the state in which the
ing the difficulty that humans have in introspecting on operator applies. These chunks are created when men-
their own memory processes. It does not a serious tal simulation determines that an operator other than
problem for Debrief, because the chunks built during the expected one is selected. Importantly, the chunks
mental simulation can be used to recognize which at- fire whenever a similar decision is made in a similar
tributes of the state are significant. situation. By accumulating these chunks Debrief thus

The identification of significant attributes is per- builds an abstract model of the application domain,
formed in the Determine-Applicability-Criteria prob- associating decisions with their rationales and alter-
leam space, which removes attributes one by one and re- natives. The problem solver's performance-oriented
peatedly applies Test-Operator-Applicability. If a dif- knowledge is reorganized into a form suited to sup-
ferent operator is selected, then the removed attribute porting explanation.
must be significant. If the value of a significant at- Performing mental simulation in modified states
tribute is a complex objeci, then each attribute of that complicates mental simulation in various respects. The
object is analyzed in the same way; the same is true for result of deleting an attribute is often the selection of
any significant values of those attributes. Meanwhile, an operator in mental simulation to reassert the same
if the variants resulted in different operators being se- attribute. Debrief must therefore monitor the simu-
lected, the applicability criteria for these operators are lation and detect when deleted attributes are being
identified in the same manner. This generate-and-test reasserted. The modified state may cause the problem
approach has been used in other Soar systems to enlist solver to fail, resulting in an impasse. Mental sim-
recognition chunks in service of problem solving (Vera, ulation must therefore distinguish impasses that are
Lewis, & Lerch 1993), and is similar to Debrief's mech- a normal result of problem solving from impasses that
anism for reconstructing states from episodic memory. suggest that the problem solver is in an erroneous state.

34



There is one shortcoming of the analysis technique * Episodic memory recognition chunks: event + at-
described here. Chunking in Soar cannot always back- tribute value --. recognition;
trace through negated conditions in the left hand sides
of productions. Therefore if the problem solver opted * State recall chunks: event -. state;
for a decision because some condition was absent in * Mental simulation chunks: event + problem space
the situation, Debrief may not be able to detect it. + state -- applicable or inapplicabie + alternative
Developers of Soar systems get around this problem in operator;
chunking by using explicit values such as *unknown*
to indicate that information is absent. This same tech- e Applicability analysis chunks: event + problem
nique enables Debrief to identify the factors involved, space + state -. significant state attributes; event

+ problem space + state -. alternative operator +
Relationship to other exploratory learning alternative state;
approaches * Natural language generation chunks: case frame -.
The closest correlate to Debrief's decision evaluation list of words; content description -- , list of utter-
capability is Gil's work on learning by experimentation ances;
(Gil 1993). Gil's EXPO system keeps track of operator
applications, and the states in which those operators * Presentation chunks: content description + user
were applied. If an operator is found to have differ- model --o utterances + media control commands +
ent effects in different situations, EXPO compares the user model updates.
states to determine the differences. Another system by The presentation mechanism that yield the latter two
Scott and Markovich (Scott & Markovich 1993) per- thpesents tha yie theslatterAto
forms an operation on instances of a class of objects, types of chunks are described in (Johnson 1994). Alto-to determine whether it has diffee~.t effects on differ- gether, these chunks enable Debrief to acquire signif-

to deermber whethe class. This evablef it to discover icant facility in explaining problem solving behavior.ent members of tercs This e class. These chunks result in speedups during the course ofdiscriminating characteristics withir the oclss. explaining a single mission. Future experiments will
Some exploratory learning systems, such as Raja- determine the transfer effects between missions.

money's systems (Rajamoney 1993), invest signif cant
effort to design experiments that provide the maximu.rr
amount of information. Thws is necessary because ex- Evaluation and Status
periments can le costly and can have persistent effects
on the environment. Debrief's chunking-based tech- The implementation of Debrief comprises over 1700
nique filters out irrelevant experiments automatically, productions; in a typical session these are augmented
without significant effort. Side events on the environ- by between 500 and 1000 chunks. Debrief currently can
ment are not a concern during mental simulation. describe and/or explain a total of 66 types of events in

the tactical air domain. Its natural language gener-
Explaining Beliefs ation component has a vocabulary of 259 words and

phrases. Debrief can explain a range of one-on-one
Explaining beliefs, e.g., that ROE was achieved, in- and one-on-two air-to-air engagements.
volves many of the same analysis steps used for ex- Formative evaluations of Debrief explanations have
plaining decisions. Debrief starts by searching mem- been performed with US Naval Reserve fighter pi-
ory for the nearest preceding state in which the belief lots. These evaluations confirmed that explanations
came to be held. It determines what operator was are extremely helpful for validating the agent's per-
being applied during that state, and uses Establish- formance, and building confidence in it. They also
Applicability if necessary to make sure that the opera- underscored the importance of having the agent jus-
tor applies in the recalled state. If the belief had to be tify its beliefs--the evaluators frequently wanted to ask
retracted in order to make Test-Operator-Applicability questions about assertions made by Debrief during the
succeed, then the operator was responsible for assert- course of the explanation. This motivated the develop-
ing the belief. Such is the case for the belief that ROE ment of support for the Explain-Belief question type.
is achieved, which is asserted by an- operator named There was immediate interest on the part of the sub-
ROE-Achieved. Otherwise, Debrief would remove the ject matter experts in using Debrief to understand and
belief and attempt mental simulation again; if the be- validate the behavior of TacAir-Soar agents.
lief is asserted in the course of applying the operator, The weakest point of the current system is its natu-
the operator is probably responsible for the belief. ral language generation capability. However, this was

found not to be a major concern for the evaluators.
Summary of the Effects of Learning Their primary interest was in understanding the think-

Learning via chunking takes place throughout the De- ing processes of TacAir-Soar, and to the extent that
brief system. The following is a summary of the differ- Debrief made that reasonm apparent it was consid-
eat types of chunks that are produced: ered effective.
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Next steps include extending the range to questions simulators. In Proceedings of the Third Conference
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generation, and making greater use of multi-media pre- resentation, 33-42. Orlando, FL: Institute for Simu-
sentations. There is interest in using the mental uimu- lation and Training, University of Central Florida.
lation framework described here to improve the agent's Jones, B. 1993. Using CGF for analysis and combat
problem solving performance, by discovering alterna- development. In Proceedings of the Third Conference
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Abstract accomplish the agent's goals. In order to
maintain such a picture, the agent should

One of the most important tasks in a use whatever information sources it has
tactical engagement is to maintain aware- available. In general, more information
ness of the current situation. This is as sources are better, but having multiple
true for simulated intelligent agents as it sources demands that the agent be able
is for humans in real engagements. We to synthesize t.e different types of infor-
have identified two key capabilities that mation in order to form a representation
are required for maintaining situational of the world that is as complete and cor-
awareness: managing and synthesizing rect as possible.
information from a variety of informa-tion sources, and correctly identifying and In earlier work (Jones, Tambe, Laird, &

tio sorce, ad crretlyidetifingand Rosenbloom, 1993) we concentrated on
sorting engagement participants into an o
appropriate mental representation. This building agents that generated reason-

paper discusses our efforts in addressing able behavior given rather strong assump-

these capabilities within the TacAir-Soar tions about world information. The past

system. TacAir-Soar agent assumed that there
were at most two agents operating in the
simulated tactical air environment: the

An intelligent simulated agent must be agent itself and one potential enemy. In

able to observe and interpret the world addition, the agent had only two sources

it is operating in. This includes observ- of information: cockpit controls reported

ing how the world reacts to behaviors information about the agent's vehicle and

generated by the agent, as well as behav- weapons, and a radar reported informa-

iors generated by other agents within the tion about the other participant in the

simulation. As the world changes, the environment.

agent must continuously build and main- This arrangement allowed the system to
tain a "mental picture" of the world's generate some tactical behaviors, but it
current state (i.e., maintain situational greatly limited the types of situations in
awareness). Otherwise there is no hope which TacAir-Soar could function. More
of generating appropriate behaviors to typically, a tactical air agent finds itself
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in situations similar to that shown in Fig- current version of TacAir-Soar receives
ure 1. There can be a number of partic- information about other participants
ipants in the engagement, and a number from three basic sources. The agent may
of ways to gather information about these receive information from a visual con-
agents- tact with another simulation participant

Thus, in our current work, we have ex- such as another airplane (this informa-

panded the abilities of the TacAir-Soar tion comes in through a DIS visual object

agent to manage information. The cur- package). The agent may achieve a radar

rent agent is able to maintain mental contact with a participant. Finally, the

representations of any number of other agent may receive communicated infor-

participants in the simulation.' In addi- mation about another participant (this

tion, the agent now synthesizes informa- information may come from a ground

tion from a number of different sources. controller, an air controller, or perhaps

Each agent receives information visu- a section or division partner). In addi-

ally, from its radar, and via radio from tion, TacAir-Soar periodically records

other participants in the engagement. position information for current contacts.

These increases in capabilities are nec- Thus, when no active (visual, radar, or

essary in order for TacAir-Soar to func- communication) contact information is

tion reasonably in the complex domain available, the agent's memory becomes a

of tactical flight. However, they also in- fourth source of information.

troduce a number of complexities to the When there is only one active informa-
task of maintaining situational aware- tion source, things are relatively simple.
ness, or keeping a mental picture of what The system simply uses the information
is happening in the world. We feel that available to track the contact. This may
maintaining situational awareness boils not always be the best or most up-to-date
down to two cognitive capabilities: man- information, but the system can only
aging information from multiple sources make do with what it has. When there
and managing information about multiple are multiple active information sources
participants in an engagement. This pa- describing contact with a particular par-
per discusses our approach to addressing ticipant, difficulties may arise. In this
these two broad issues within the TacAir- case, there is a decision to be made about
Soar system. where to look for the correct information.

Some types of information are only avail-
Managing multiple information able from particular types of sources, but
sources others are provided by all of the infor-

mation sources. For example, both radar
Besides receiving information from its and visual information can provide the

own vehicle's instruments and gauges, the relative position of another airplane, but

radar can provide a more accurate mea-
1 In theory this number is unbounded, but surement of the airplane's altitude and
in practice agent performance can degrade speed. In addition, information sources
dramatically when it has too many other have different update rates, so some may
agents to pay attention to. contain "stale" information at certain
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Figure 1. A typical engagement involving multiple participants and multiple
sources of information.
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times. For example, visual information what inaccurate and takes a while to re-
has an almost instantaneous update rate, port. Thus, the system still does what
radar information depends on the speed it can to get a radar or visual contact iD
of the actual radar sensors, and commu- order to get faster, more reliable informa-
nicated information is updated relatively tion. The point here is that TacAir-Soar
slowly. TacAir-Soar currently prioritizes not only requires knowledge for managing
its information sources by assuming that information from multiple sources, but
visual information is generally better it also must have the knowledge to seek
than radar, radar is generally better than out different types of information contacts
communication, and communication is when appropriate.
generally better than memorized infor-
mation. In addition, the system ranks Identifying and tracking multiple
current information by remembering how participants
long it has been since the information
was last updated. When it wants to look In the tactical air domain, there are
up information for a particular partici- generally a number of participants in
pant, it uses information from the best each engagement. A particular simu-
existing source. lated agent will probably have a section
Another issue involves what actions partner, and there may be any number

Another issue d involv ndes wato a ions of other friendly and hostile participants
TacAir-Soar should take in order to gain that the agent must worry about. Thenew information about a participant. In major difficulty arises in creating a map-

the older version of the system this was p ingibetw aricin that are

"a simple matter because there was only ping between the participants that "axe

"a radar information source. If the sys- that the agent is currently receiving in-
tem did not have radar contact, it didththeanticurtlrcivgi-what it could to achieve a radar contacti formation about (from at least one of the

Now, however, there are many different information sources). Thus, much of our
informiow, h owrter areman y different waresearch effort has been on finding an ef-
achinfor thema Inaddition ,some sources an frficient, accurate, and realistic method to
achieve them. In addition, some sources miti hsmpig

are better than others in different sit-

uations. For example, radar is good at The problem can be summarized as fol-
accurately tracking altitudes and head- lows. The agent may have a mental rep-
ings at a distance, but rapid visual infor- resentation of a number of other partic-
mation is necessary as the engagement ipants in the current simulation (we will
progresses. refer to these as mental agents). Now the

For example, if TacAir-Soar only has agent receives a new contact (i.e., new

recorded information about an agent, the visual, radar, or communicated informa-

system might request some communi- tion becomes available). The agent must
now decide whether this new contact cor-cated info what in orert ie a responds to one of the mental agents, or

better idea of what the agent is doing, whether this is a new participant (requir-
Communicated information is useful (par- ing the creation of a new mental agent).

ticularly at long ranges), but it is some- If the contact corresponds to one of the
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existing mental agents, TacAir-Soar must nicated information). If this filter fails
decide which mental agent the informa- to identify a unique mental agent, the
tion pertains to. Only alter this map- next filter compares any new position
ping has been completed can the system information to the last position informa-
correctly interpret and respond to the tion the system recorded for each mental
new information. This should be done as agent. TacAir-Soar uses a form of tem-
quickly as possible, but it should also be poral reasoning, based on the time of the
done with the same intelligence and flex- last recorded position for each mental
ibility that human pilots have. It can be agent, together with the contact's head-
disastrous, for example, to conclude by ing, speed, etc., to determine which men-
mistake that a hostile participant is the tal agents the new contact information
agent's section partner. could possibly pertain to.

A similar problem arises in the case This filter may rule out any existing
where two agents must communicate with mental agents, in which case TacAir-Soar
each other about other participants in will create a new one. On the other hand,
the engagement. For example, the lead the filter may provide a unique mental
agent of a flight section may need to tell agent to assign the new contact infor-
its partner which bogey it is targeting. mation to. Otherwise, there is still some
However, the two agents will not neces- ambiguity so the system must use its final
sarily have the same mental agents repre- filter. This filter compares individual fea-
sented, and often they will not even have tures in the new contact information to
the same information coming in on their the same features in each remaining can-
sensors. The solution for this is for the didate mental agent. The mental agents
lead to describe particular characteris- that are closest in value for a chosen fea-
tics of the bogey, so the partner can use ture are saved, while others are elimi-
this information to determine which men- nated from consideration. This process
tal agent the lead is talking about. In continues through a set of features un-
TacAir-Soar, the problem of communicat- til a unique mental agent remains. Cur-
ing about other engagement participants rently, the features that TacAir-Soar ex-
is subsumed by the general problem of amines are magnetic bearing, range, alti-
identifying and sorting incoming informa- tude, speed, and heading. If, after sort-
tion (regardless of the particular infor- ing through all of these features, there
mation source) to the appropriate mental is still more than one candidate mental
agent. agent, the system simply chooses one at

TacAir-Soar solves this problem by pass- random. However, this is rare unless two
ing new information through a set of ilf- contacts appear in almost the same posi-
ters. The first filter determines whether tion, in which case further discrimination
the new information closely matches any is probably meaningless anyway.
existing contact information for a men- This filtering mechanism is based on
tal agent (e.g., the system might achieve the methods that real Navy pilots and
radar contact with an agent for which RIOs use to identify contacts, and it has
it had only previously received commu- proved relatively robust in allowing the
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TacAir-Soar agent to reason about mul- mation sources, the system has mech-
tiple participants in a simulated engage- anisms for choosing between existing
ment. However, there are times when the sources, as well as methods for generat-
current mechanism fails, indicating that ing behavior so that the agent can ac-
there is some knowledge missing from quire new information (such as searching
the process. For example, human pilots for radar contacts or moving into visual
generally begin a mission with an idea of range). Reasoning about multiple partici-
where the friendly and enemy forces are, pants requires the agent to form a mental
and this helps them identify initial con- picture of its situation, including a men-
tacts. Additional information sources, tal representation of each participant in
such as IFF, can also be used to help the engagement. As new information is
identify and sort contacts. Within visual acquired, the system uses heuristics to
range, pilots can use the actual shapes determine to which mental agent each
of different vehicle types to determine new contact pertains. In addition, the
who is wL - far TacAir-Soar does not agent performs these tasks within the dy-
use these a . ional types of knowledge, namic constraints of the domain, so it is
and so it is prone to getting confused in possible for it to get confused in the same
some situations where humans do not types of situations as humans.
have difficulties maintaining situational Our continuing work will focus on the
awareness. TacAir-Soar can also become addition of new information sources such
confused when engagements become fast as IFF and radar-warning receivers. To-
and close, so it does not have time to sort gether with these devices, the agent will
and process all of the incoming informa- require the knowledge to gather and man-
tion properly. However, this is the type age the types of information these devices
of situation that is difficult even for hu- provide in the appropriate situations. In
man experts. addition, we are continuing to study how

human pilots maintain knowledge about
Summary other participants in an engagement, so

that we can improve the mechanisms for
Maintaining situational awareness is a idetifyngan sori ta i me n-

particularly important part of tactical identifying and sorting contacts into men-
partculrly mpotantpar of actcaltal agent representations. As this knowl-

behavior, and simulated tactical agents tlge impresenttpect to deve l -

must address the issues involved. We edge improves, we expect to develop gen-

have identified two important compo- eral intelligent methods for maintaining
nents of maintaining situational aware- situational awareness, so the agent can

ness: managing knowledge about multiple generate even more realistic and appro-
tactical participants in an engagement, priate behavior.

and managing incoming information from
a variety of sources. In addition, we have Acknowledgements
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Abstract This paper investigates various repre-
sentations for sets of interacting goals

The domains that computer-generated that arise from such a complex knowl-
forces address (such as tactical flight) be edge base. We have identified five issues
more complex than have generally been that we wish to address in our examina-
used in artificial-intelligence research. A tion of the candidate approaches. First,
particular characteristic of this complexity it appears to be necessary to represent
is that a reasonable agent must attend to agent goals as a forest of interacting goal
a large number of goals at the same time. hierarchies. Second, existing goal-driven
Moreover, some of these goals are wide- systems are not designed for such a goal
pendent, while others interact with each representation, so we must find an ap-
other in a variety of ways. This research propriate mapping between agent goals
focuses on a number of issues involved in and the types of goals that current ar-
representing, reasoning about, and learn- chitectures for intelligence allow (e.g.,

ing about such complex goal structures, we want the architecture to do as much
We discuss a number of app~roaches that maintenance of goals as possible). Third,
we have examined within the framework of the agent must reason about how well
the TacAir-Soar system. different actions achieve combinations

of goals. Fourth, the ideal knowledge
representation should facilitate effective

The Soar-IFOR project aims to build learning within the architecture. Finally,
believable agents for tactical air simu- the representation should also allow the
lation. We have constructed a system, knowledge base to be updated by sub ject-

called TacAir-Soar, that embodies a large matter experts and knowledge engineers

amount of knowledge for carrying out with a minimum of effort.

tactical naval air missions (Jones, Tambe,

Laird, & Rosenbloom, 1993; Rosenbloom An example from the tactical flight
et al., 1994). In the course of our re- domain
search, we have developed a large ontol-
ogy of the knowledge required to generate To illustrate this complexity of knowl-
human-like behavior in flight simulation. edge, consider a situation where an F14
This includes knowledge about mission pilot has just launched a medium-range,
goals, doctrine, equipment specifications, radar-guided missile. At this point, the
survival, situational awareness and inter- pilot has a number of active goals, such
pretation, cooperation, and other aspects as surviving, accomplishing a specified
of the task. Although each of these types mission, destroying the target, achieving
of knowledge is relatively independent, another missile shot, maintaining situ-
their impact on behavior is highly inter- ational awareness, and supporting the
dependent. launched missile. A subset of these goals
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appears in Figure 1. Some of these goals participants for simulated engagements.
have a direct hierarchical relationship Unfortunately, existing Al systems that
(e.g., intercepting a target and achiev- generate behavior are not well suited to
ing proximity to it), while others are rel- the demands of knowledge-rich tasks with
atively independent of each other (e.g., interacting goals. In general, Al systems
achieving proximity to a target and em- only focus on one goal at a time, or at
ploying weapons). In response to this best allow a single hierarchy of simulta-
host of goals, there are a number of can- neous goals. However, some of the goals
didate actions the pilot could consider. in the current domain are hierarchical in
However, these goals constrain and some- nature, while others clearly are not. Even
times even conflict with each other, so the non-hierarchical goals interact and
it does not always suffice for the pilot must be taken into account when generat-
to select an action that addresses only a ing behavior. In essence, it appears that
subset of his or her goals. the best representation of goal knowledge

In this case, the pilot may wish to de- for this domain consists of a set of inter-

crease closing velocity to the target in or- acting goal hierarchies.

der to increase chances of survival and to This is not to say there has been no re-
achieve another missile shot. One possi- search on planning to address unordered
ble action would be to turn away from interacting goals. For example, Chapman
the target, but this would violate the (1987) presents a complete and correct
goals of maintaining a radar lock and planning 'method for arbitrary goal coin-
supporting the launched missile because binations, but it works in restricted do-
the pilot's radar would no longer be il- mains, and it relies on search-intensive
lumninating the target. Another option planning, rather than real-time behavior
would be to reduce speed by reducing generation. Cohen, Greenberg, Hart, and
thrust. This has the tradeoff of reducing Howe (1989) and Veloso (1989) have sug-
the F14's energy, which could become im- gested methods for conjunctive goal plan-
portant later in the engagement. Other ning in real time by storing preplanned
possible actions would be to reduce speed episodes or using intelligent heuristic
by gaining altitude, or reduce closing search. These are alternatives to the ap-
velocity by turning part way away from proach presented here, and we plan to
the target (as in an "f-pole" maneuver), examine the tradeoffs between various
The amount of altitude change or f-pole approaches in the future.
turn would depend on other aspects of Rather than committing to a single po-
the current situation, such as the gimbal tential solution, we are evaluating a num-
limits of the radar. ber of different approaches both to the

representation of goals within an agent,
Issues for constructing an intell- and its mechanisms for reasoning about
gent agent interactions between goals. All of our ef-

Our approach to simulation is to apply forts have been developed with variations

state-of-the-art artificial-intelligence (Al) of the TacAir-Soar agent (Jones et al.,
technology to create individual intelligent 1993; Rosenbloom et al., 1994), which is
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Figure 1. A subset of concurrent, interacting goals in the tactical air domain.
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implemented within the Soar architecture speed, missile status, etc. Some implicit
for cognition (Rosenbloom, Laird, Newell, goals (e.g., survival) are not represented
& McCarl, 1991). at all, and are simply assumed to exist,

and the behavior-generation rules take
Mapping agent goals to architectural them into account even though they are
goals not represented explicitly. In the above

example, survival, maintaining situational
As the previous section illustrated, agent awareness, and decreasing closure are im-

goals are best represented as a set of goal plicit goals, whereas destroying the target
hierarchies. However, traditional Al sys- and supporting the missile are mapped to
tems do not encourage this type of rep- architectural goals. In many ways, this is
resentation. For example, architectures an ad hoc solution, but it allows the sys-
such as Soar, Prodigy (Minton et al, tem to generate reasonable behavior by
1989), and Theo (Mitchell et al., 1991) using architectural mechanisms to sup-
make goals a first-class object type, and port the explicit goals while still allow-
they include specific mechanisms for rep- ing the implicit goals to modify behavior
resenting, posting, and learning about when appropriate. Thus, this represen-
goals. But these goals can only be ex- tation works well for generating behav-
pressed easily in a single stack or hierar- ior, but difficulties arise when the sys-
chy. To overcome this limitation, alter- tem must learn to adapt that behavior.
native goal representations can be used, For example, there is no easy way for the
such as encoding goals as part of the system to detect that maintaining situa-
agent's current state description. How- tional awareness sometimes conflicts with
ever, this type of representation precludes evading a missile.
using many of the mechanisms the archi- In response to this problem, we have
tecture provides directly to support goals. investigated two alternative approaches
Thus, we are left with the question of investig goalternatie approaches
how the agent goals we wish to represent to mapping goals. in one approach, all
can or should be mapped to architectural agent goals are mapped into the archi-gol ta teoverall system supports, tectural goal hierarchy, collapsing the
goaLs that the oagent's forest of goals into a single stack.
The initial design of TacAir-Soar takes a The alternative approach is to map none

mixed approach to the mapping between of the agent goals into the architectural
agent and architectural goals. Some of goal hierarchy. In this case, all reason-
the agent goals are represented explic- ing takes place in the service of a single
itly as architectural goals, whereas others architectural goal, and all other goals ap-
appear as implicit goals in the agent's sit- pear as descriptions of the agent's cur-
uation representation. The explicit goals rent situation. There are a number of
map directly onto Soar's goal stack, and tradeoffs between these two approaches
they benefit from Soar's goal maintenance involving the automatic mechanisms for
and learning mechanisms. In contrast, maintaining a goal stack and learning,
implicit goals are recorded along with and the flexibility of the representation of
other descriptions of the agent's current goals and knowledge about goals in terms
state, such as it's vehicle type, current of expressive power and ease of mainte-

47



nance. For example, when mapping all to architectural goals in a simple manner.
agent goals to architectural goals, the
current forest of goals must be collapsed Reasoning about interactions
into a single hierarchy. This new hier-
archy dynamically imposes a syntactic In addition to an appropriate represen-
parent-child relationship on some goals tation for goals, the agent must contain
even when such a relationship does not mechanisms for reasoning about the way
exist semantically. For example, evad- goals influence each other. There are two
ing a missile might be assigned as a child general cases that we consider here. Two
of employing weapons, even though the goals interact when they can be achieved
goals do not really depend on each other. or maintained concurrently, but they each

constrain the behaviors that are appropri-This resulting hierarchy represents a ae o xmli iue1 h gn
single total ordering on the normally ate. For example, in Figure 1, the agent
sringlettall orderingonls, tihe nomaly can reduce closing velocity to its target
partially ordered goals, which can lead while maintaining a radar lock by turn-
to diffculties in maintaining the goal ing just until the target is on the edge of
stack. In the above example, if the goal the radar. Different behaviors would be
to employ weapons goes away, the goal appropriate if these goals were being ad-
to evade a missile will also be popped dressed independently. In contrast, some
from the stack, because it was arbitrar- desdidpnety ncnrssmfromthe tac, beaus it as rbitar-goals are simply impossible to achieve or
ily set up as a child of the goal to employ maintain at the same time. In this case,

weapons. On the other hand, because
we say the goals conflict with each other.all of the goals are mapped to architec- Again referring to Figure 1, the agent

tural goals, this version of the system can An ain tainuaeradarhlockeif

take better advantage of built in mech- it is busy evading a missile. Thus one or

anisms for detecting and implementing the other goal must be susper.led tem-

learning opportunities. The architectures pri or gore ompetely.

for intelligence that we have mentioned porarily or ignored completely.

generally learn about relationships across Each of the system variations we have
architectural goals, but not within archi- explored addresses goal interactions and
tectural goals. If all the reasoning takes conflicts. In one of our approaches, in-
place within a single architectural goal, teractions between goals are represented
no learning can take place. implicitly within the proposal condi-

tions for actions. For example, an agentOur experiences with various represen- might propose the action of maintain-

tations for goals have also led us to con- ig r rolock on a trt nthere

sider alternatives for expanding archi- ing radar lock on a target unless there

tectures such as Soar, so that it can ex- evad An teativeap n volve

plicitly represent sets of goal hierarchies explicitly representing the interaction

rather than just a single hierarchy. If this between goals, so the agent can reason

effort is successful, it should provide us between goals so atten

with all of the advantages of both of the about when to suspend goals or attend

extreme approaches mentioned above, be- to multiple goals. In this case, the agent

cause all agent goals would map directly proposes the goals of maintaining radar
lock and evading a missile independently,
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and separate reasoning determines which actions to come to two different head-
set of actions addrcsses these goals in the ings. This will cause an impasse in the
best way. For example, the agent may de- Soar architecture, which identifies an op-
cide to evade because survival is a high- portunity to learn. Next, the system can
priority goal. plan by predicting outcomes of various

The agent currently makes these deci- actions, thus deciding which goals are

sions with built-in arbitration knowl- more important to achieve, and which

edge about which goals interact with can be suspended temporarily. For exam-

each other. However, a final important pie, the system may discover by mental

issue concerns how the agent would learn simulation that it will be destroyed if it

such knowledge with experience. We see does not evade an incoming threat. Thus,

a number of advantages from the ability the goal to evade should take precedence.

to identify and learn about goal interac- In other situations, it may be more im-

tions and conflicts. If the agent finds it- portant to maintain the radar lock (e.g.,

self in an unexpected situation, it should the agent may have launched its own mis-

have the flexibility to generate reasonable sile). Goal interactions will be handled in

behavior by evaluating the effects of dif- a manner similar to goal conflicts, except

ferent actions in light of the current set the system will have to be supplemented

of goals. In addition, the knowledge ac- with extra evaluation knowledge so that

quisition task can be made easier if an it can appropriately measure the partial

agent programmer does not have to an- satisfaction of multiple goals.

ticipate all the interactions and conflicts
that may arise when new goals are added. Summary
Finally, if the system can detect interac- There are a number of important issues
tions that human experts have not en- involved in handling interacting and con-
countered (e.g., when testing new types flicting goals to generate reasonable be-
of technology), the system may be able to havior in a complex domain. Perhaps
discover new tactics for satisfying partic- foremost are the facts that an intelli-
ular sets of goals. gent system must be able to represent

Currently, none of our agent implemen- and reason about multiple concurrent
tations detect or learn about goal inter- goal hierarchies, and traditional goal rep-
actions on their own. However, in devel- resentations in existing Al systems are
oping alternative framewoirks and goal inadequate. Given an appropriate goal
representations, we have identified some representation, an agent must also be
approaches that may be useful in sup- able to reason effectively about the pos-
plementing TacAir-Soar with this abil- sible interactions and conflicts between
ity. As an example, suppose the system goals, producing the best behavior given
knows about the goals to evade threats all the various constraints. Finally, intel-
and to maintain radar lock, but it has no ligent agents must eventually be able to
knowledge about how these goals con- acquire knowledge about interactions and
flict. The system's first task is to detect conflicts automatically, so that the agent
the conflict. This occurs when it proposes can behave flexibly and knowledge from
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Abstract must be combined into a single, organized repos-
A fundamental goal of the IFOR/WISSARD itory that can be accessed by all members of the
Aroject fundaencratlgoa of autheom , i D project at each of the three sites involved (Univer-
project is the creation of autonomous, intelligent sity.of Michigan, University of Southern Califor-
agents that can participate in computer s snula- nia/Information Sciences Institute, and Carnegie
tions of battle for training and gaming purposes. Mellon University). Additionally, there needs to
The creation of such an agent has many of the be some way to show the influences of various
same reuiurements as constructing an expert syo- pieces of knowledge on the design and develop-
tens. In particular, the designers face the enor- ment of the agents. Without this, there is no way
mous task of acquiring, encoding, and refining the for SMEs to validate the relationship between the

knowledge that defines the agent's desired behav- domain knowledge they provide and the agent's

ior. The knowledge must be drawn from many behavior.

sources, e~g. subject matter experts (SMEs), Given these requirements, the NCSA's Mo-

training manuals and other texts, observation, ex- sic tes chosenas the a cato wti
perimentation, etc. This is usually done by many saic system was chosen as the application within
peoplentathom, rawmet.iT s musually done by may which to create a document that would combine
people whose raw materials must then be repre-doankwlgeitaetimeettonn

sented as a coherent specification that designers domain knowledge with agent implementation in

can use for constructing the agent, communicat- a coherent manner that could be accessed across

ing among themselves, and, ultimately, describing the Internet. The TacAir-Soar Description Docu-

the causes and rationales for the agent's behavior ment has three layers, corresponding to the three

to others. In any case, this is not a simple task, levels of specification we use to discuss agent be-

but in the case of the TacAir-Soar project, the havior. The top layer of the document reflects
difficulty is increased by the geographical distri- the orowledme level, an English description of the

bution of the project's members.1 Our solution to air-to-air combat domain. Tcis is a level of spec-
this problem is an electronic, multi-layer hyper- ification that is concerned with the knowledge of
text document called the TacAir-Soar Description objects, actions, and relations in the domain in-
Document (TDD) which is implemented within dependent of any particular computational imple-
the National Center for Supercomputing Appli- mentation of that knowledge. Although the top
cations' (NCSA's) Mosaic. This document allows layer of the TDD presents a coherent view of the
its viewers to obtain information about the do- domain by integrating across particular instances
main in plain English, about the agent in terms of knowledge acquisition, information gathered
of its structures and behaviors, and about the ac- from any of the sources listed above (interviews,
tual code that implements the agent. electronic mail, etc.) is also linked2 to the top

layer in its raw form to allow for traceability.

Introduction Items in the top layer of the TDD may also
have links into the next layer of the document

The TacAir-Soar prbject requires information which describes the agent's structures and behav-
from many sources. The sources used to date in- iors at the level of the problem space computa-
dude interviews with SMEs, electronic mail mes- tional model (PSCM). The PSCM-level is a de-
sages, training manuals, telephone conversations, scription of the agent's behavior in terms of an
and observation of fighter pilots during simulated
engagements. To be useful, all of this information 21n a hypertext document, links are portions of

the text that are highlighted in some way and are as-
1For a description of the TacAir-Soar project, see sociated with another document. If a link is selected,

this volume, [Roesenbloom94]. the document to which it refers is displayed.
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abstract model of the Soar architecture, indepen- mentation of the domain. The information con-
dent of the particular implementation of the ar- tained in this layer is of a general nature and is ob-
chitecture in C. Each PSCM-level document links tained from a number of sources. All source ma-
to the symbol level representation of the agent, i.e. terial is kept and is referenced by the domain de-
to a matching Soar code file in the third layer of scription to allow for traceability. Interviews with
the TDD. The code files in the third layer are the pilots are videotaped whenever possible. (These
actual files that are loaded when an agent is cre- are turned into documents that are considered the
ated, so they are always current. Because the lay- source of this information. The videotapes them-
era are linked, a user can work up or down through selves are also kept.) Telephone interviews are
the hierarchy. Working downward means begin- also turned into source documents. Electronic
ning with the description of a particular concept mail messages are given a standard identifying
and following it through the layers to its imple- header. For information from manuals and books,
mentation. Working upward means moving from a bibliography-style entry is kept.
the agent code through the layers to find the jus- Knowledge from these disparate sources is or-
tification for a particular structure or behavior. ganized into a coherent whole by the use of a
Platform and Justification topical tree-like structure and an index by topic

area Reorganizing the information in this way
Mosaic is a hypermedia browser distributed by has a number of benefits. Combining from mul-
the NCSA. It allows a user to view docu- tiple sources on the same topic quickly reveals
ments that contain plain text, formatted text, contradictions and missing or unclear informa-
PostScript, images and diagrams, audio, and dig- tion. Further, as detail is added to specific topics,
itized video. When combined with servers that the new information is near the older, more gen-
use the HyperText Transport Protocol (HTTP) eral knowledge and so is easy to locate. Since all
[Berners-Lee92], Mosaic can be used to view doc- of the organized documents are given similar for-
uments that are located throughout the world on mats, they are easier to browse than the various
machines that are connected to the Internet. source documents. Finally, browsing the informa-

These features mean that Mosaic has many ad- tion topically is generally the easiest method for
vantages. First, because it is already written and users.
has a large number of users world-wide, we do
not need to spend time developing or maintain-
ing our own tool. The large base of users also The PSCM Level
means that tools that support the authoring of
documents, such as editors and translators, are The layer below the knowledge level gives a de-
readily available. Second, Mosaic is in the public scription of the agent's behavior in terms of an
domain so there is no monetary cost associated abstract model of the Soar architecture, indepen-
with the TDD's development or use. Third, Mo- dent of the particular implementation of the ar-
saic runs on many Unix workstations and on the chitecture in C. The PSCM is the basis of Soar
Macintosh, so all group participants are able to and is the common view shared by the project
access the documentation regardless of the ma- participants. It is a view of problem solving be-
chine they normally use. Fourth, through the havior in which the agent pursues ;ts goals by
use of a server, all members can access the same applying operators to the current state thereby
copies of the document at all times.3 Changes are deriving a new state in an iterative process until
immediately accessible to all, reducing the chance the goal state is achieved. Thus, this level of de-
of out-of-date documentation causing confusion. scription maps domain knowledge into the form
Finally, because of the multimedia capabilities, of goals, operators, and state information 4 By
we can include such items as diagrams for describ- following links between the knowledge-level doc-
ing tactics and maneuvers, images of equipment, uments and those at the PSCM level, the effect of
and unmodified electronic mail messages. This the knowledge on the structure of the agent can
flexibility allows us to use the most appropriate be determined. In addition, areas of the agent
means to store and convey information, that would be affected by additional information

in a particular domain area can be found. Since
The Knowledge Level the PSCM is a specific instance of many ideas
The top layer of the TDD describes the domain of that are common within Al, this level of represen-
air-to-air combat at the knowledge-level, i.e. in- tation may be accessible to many subject matter
dependent of may particular computational imple- experts as well.

3Anyone with
access to Mosaic can view our documentation with 'An understanding of Soar and the PSCM can be
the URL http://krusty.eecs.umich.edu/ifor. gained from [Newell9o] and [Rosenbloom93].
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The Symbol Level
There is a one-to-one mapping between the doc-
uments at the PSCM level and the Soar agent a, e - & -At

code, the lowest layer of the TDD. These files O.N.MT: I .MA OOSwit•u 9 l•M
can be viewed to see how the definition of a prob- . [tA•d...f.. M. ..
lem spac or operator was realized in code that
executes within the i mplementation of the archi- Doa~n Decrppdoa Doema

tecture. Since the PSCM is an abstraction, design
choices at that level may have many realizations ffnu .sMiM awat&wn" raaa

in the code. By separating the code level into , .f-.. .. -. .. w.W,•

its own layer, we also separate the general con- "
straints on that realization (e.g. that it should be •
an operator rather than state) from the realiza- .
tion itself. By linking the two layers we maintain • .
a record of the origin of our coding choices. .

Example of Use Ua,.m=gci-@ .•..q .•i,~,n.
Figure I shows the root of documents which make • .. M..'.......
up the knowledge level. Underlined words and
phrases indicate links to other documents. The
links Geometry through Communication connect
to pats of the knowledge-level document hierar-
chy that cover those ,.l-.U
topics. TacAir-Soar Goal/Operator Hierarchy
links to the root document of the PSCM level. Figure 1: Root of the Knowledge Documentation.
Tom Brandt at UM, July 23, 1993 (2vN) links to
a source document that was created from a video-
taped interview.

Following a piece of the topical organization
downward, figure 2 shows the document that is
linked to by the Geometry link of figure 1. This
document, still part of the knowledge level, has a
figure that shows the terms used to describe the -- W A i -geometry of two aircraft. The link Target Aspect Im V i--
then leads to the document in fig3ure , which o,.muu-w[,,m:/itr-..-em.i•a,.-,tl'M:W--,..1l-•
gives a narrative description of target aspect.
This description ends with a link that goes to (oemefry
a knowledge level document that covers the re- W-qwWM9A=*-. aft

lated topic of lateral separation. Below the de-
scription of target aspect are links to other rel-
evant knowledge-level concepts, as well as a link
to the source for this document's information.

At the bottom of figure 3 there are links to
the three documents in the PSCM level of the
TDD that involve target aspect. Following one b-4

of these, Cut-to- leads to the document in fig-
ure 4, which describes the operator that is used "

to cause the agent to turn its aircraft in order to
achieve a desired target aspect. Finally, following
the link top-pe ... /eut-to-tasoar into the sym-..
bol level of the TDD displays the Soar produc- -

tions that implement the PSCM-level operator, 1
as shown in figure 5. ___-__-.___,______.__..v _____.

Conclusions Figure 2: The Geometry Knowledge Document.
Initial knowledge acquisition results in changes
to the domain level of the document. This infor-
mation is in a form that both project members
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Figure 5: The Soar productions for cut-to-ta.

Figure 3: The Target Aspect Knowledge Docu-
ment.

and non-project members can access and eval-
uate. Designers can then decide how to realize
the new information within the agent. This dis-
cussion tends to take place at the abstract level
of the PSOM, and is subsequently recorded as

M loorNO LMAA A additions or changes to the PSCM layer. Once
DONIS -A CW:Q44 the PSCM design is complete, coding can begin.

Suei~ MJ~hitp~em..in.ifej~tml~j~ei[$JIf there are decisions that cannot be made un-
___________________________ambiguously at the symbol level, pointers back

Openatw. cur-to-ta through the PSOM can help direct attention to
&4-9016other parts of the code that may be relevant.

0 A*RJNUlWThe system we have described has proven to
Op~deemnamwork well. Both project members and domain

h~k~n~w~muiMexperts are able to access the information. The
m13.m@.Me lefut~ &a--dMiUf ability to include images and diagrams has proven

111rmrsoaL Ito be very useful.

thuhS"b 6.0 idN.M-a..tr~-g ) t.le4 There are a number of limitations which need

to be explored in more detail. The question
Whe-rorromoof~howof centralized vs. de-centralized control of the

aftir-4010"document has become increasingly important, as
_______O is usual for any dynamically changing resource.a 4106,101111Centralized control has thus far ensured that all

- -.-.~. - ~have access to consistent information. However,
this has proven to be a bottleneck in the pro-

___________________________ cess; of adding new information. Also at issue are
the possible roles of digital libraries in expanding

Figure 4: The Cut-to-ta PSCM document. the type of information that can be included in
the "document"i (e.g. video of experiments rather
than just transcriptions) and of the Internet in
making such a document more widely available.
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Abstract different physical locations, with diffauet models
Mke fldies Of Rasme numer Of autonomou of th nirnet with different pbysia abil-

cousute-gewtedfores "Wuqim that &he". itles, and posibl~y different short-term, goals, to
-eableto cormt hirShvos work together to achieve the most efective re-

Within the militry, theware ammanu level of co- suits.
ordjinstio, fyyjp th high-eve Pmangement Of In the past, computer-generated. forces have
* theater of war, dawn to the lnog,4el inaw taken one of three approadhes.
6~ou of sudsvidual solders. Tac4ir-Sor wvpre- 1. No coordination
scabsa data POWn at this low level wher US&i Many computer generated forme do not at-
vidual fighter plane. mudt fly together =n sections tempt to coordinate their behavior with any
with support frm a air intercept controllr. In other forces. They have a specific mission that
this pape we analue the types of cooniinated be- they are to execute, and they execute the mis-
honior reguird to make TwAw~-Soar a rehabitc sion independent of other friendl~y forces In
moodelof huxmn behavior, the methods that our many iauoae force (SAFORs), it is
"cageb emplo to coordlinate their behavior, and left for an overseeing human to organize their
Anaslu, the constraints coiordimation. places on the behavior. Sometimes this requires that the hu-
design 01 computer-generated forces man 'micro-manage' the individual units, and

in the heat of battle, the human can became
Introduction overloaded.

One of the ultimat. goals of researd in computer- 2. Centralized control
generated forces ito populate simulated battle- When tight coordination of behavior of a smiall
fields with automated intllgent agents' which unit is required, the common approach is to
behave as humans would on a real battlefield. Al- treat the aggegation as a singl unit In tams
though we can. make progres by creating more of behavior. For example, individual tanks
and more individual agents, we will still be far moorbe representedon the battlefield, but their
short of modeling human behavior unless we cre. behavior is organized into platoons and camk-
ate agents that coordinate their behavior. panies. instead of atteinpting to represent the

Tie reasons for coordinating the behavior of in- communication and coordination of the indi-
dividuals are obvious. A singie unit has only Sm- viuda tanks, behavior is generated for the pla-
Ited ability to sense its envirovnment directly, and toon (or company) as a whole and then spa-
limited ways in whidh it can act on Its environ- dialized for the individual unit (a tank). Each
meu Through coordination of seusing, multiple unit does not idpnetyremano about its
agents can share their knowledge, about the mnvi- behavior and there is no explicit communica-
ronment, thus making whatever action they take tion, between units.
more effective Through coordination of their aco 3 Explicit cozrunand and control
turn, miultiple agents can perform actions that no In a limited number of cases, computer-
singl agent can perform, such as creating diver- generate forces have generated vxpici orders
slam and supporting actions, or bringing to bear to law-~ehlo fmv, as in Eagle 11 DPowal
Aire power that no singl agent has alone. The and Hutchinson, 1993]. However, this did not
problenm is how to get many different agents, in inch; im ineato ewendepen-

'T1hroughout this pape we will use the tarm agent do nt
to nide to a single computer-gemerated entity, such as The condusion is that only limited pregte
a ploatof afighter Plane. has been, made in creating agents that coordinate

57



their behavior in flexible ways. Unfortunately, higher levels.
solving the general problem of dynamically or- 3. Coordinateýd behavior should be easier for hu-
nizing multiple agents to ,dma.io their 004) mans to understand because thee will be ex-
nation is an intractable problem. However, to cre- p comn ±t that can be observed.
ate coordinated automated forces does not require
a complete solution to this problem. We can limit 4. Coordinated behavior between human and
ourelve to modeling the methods and practices computer generated forces will be possible.
currently used by military organizations. Within in this paper, we report on the first steps at
the military, the command structure is a rel- c behavior within automated forms by
atively static hierarchy, where preplannhig and examining our im plm tation of the coordina-
training are used extensively to avoid the corn- tio. reqired for two planes flying tactical air
plexities, dea^ communication difficulties, and missions as a section. Of necessity, we have
possible confusion that can arise with dynamic been studying low-level real-time coordination
reorganization or retasking of the participants. that arises during the execution of a mis-
Alo, much of the behavior is determined by pwe- sion. We have not studied the longer tam coor-
defined tactics and doctrine, which reduces the dinatlon that is required at higher levels of the
need for communication. This is not to say that command hierarchy such as mainai an air or

ui rewm nizations and retaskings are not poe- ground campaign.
sible, it is just that they are held to a minim, Our approach is to treat our work as a can
and are based on well defined procedures. study. We start by analyzing the coordination

Thus, our goal is not to develop new forms of required for flying two planes in a section in our
coordination and communication for the military current npmetai Next we study the vai-
(they have been working on this for thousands of ous methods that computer generated forces can
years), but instead to create computer-generated use to obtain the knowledge required to coordi-
forces that can participate in coordinated behav- nate their behavior. This leads to the main point
ior within the limits (and breadth) of a military of the paper which is to identify how coordination
organization. Our goal is to identify the types impacts the design of computer generated forces.
of coordination and communication that must be
supported by an intelligent agent and then exam- Example Scenario
ine how this impacts on the design of computer
generated forces. The environment in which we are studying co-

Our approach starts with individual units that ordination is tactical air combat, as part of the
independntly reason about their own behavior Soar/IFOR component of WISSARD. The agents
and coordinate their behaviors using explicit com- we are modeling include fighter planes, such as F-
munication as well as shared tactics and doctrine. 14's and MIG-29's, and air intercept controllers
We plan on using explicit command and control, (AIC) in AWACS-like planes such as the E-2C.
but with the intent that it is ubiquitous and used Our FOR agents are built in ThcAir-Soar [Rosen-
more flexibly and robustly than has been demon- bloom et aL, 19941 within the Soar architecture
strated to date. Some of the advantages of this [Laird et aL, 19871 and interact with the DIS
approach are as follow= world through ModSAF [Calder et aL, 19931.

Each agent is independent situated in its own
1. Coordi ated bhvor will be mr vehicle (such as ant F-14, pn MiG-29, or an E-2C),Coordinti based on communication an be and is restricted to perceiving what is available

explicit, require time to transmit and inte- on its own vehicle's sensors. Our agents commu-
pret, be open to mis-intepretation, jamming, nicate via radio mesages that approximate the
etc. Coordination baed on shared doctrine
and tactics will obey doctrine, but it w il messages sent by ihman plgots. In our current im-
fail when the doctrine fails. In addition, by in- (as either red or blue, or both).
dependey modeg each entity (isad of Consider the scenar in fture 1 in which twoa group as a whole), it should make it ea5W blue fighter planes (F-14's) are flying together as
to model doctrine where the individual unit or a section in a combat-air patrol (CAP) protect-
subgroup is expected to have initiative. ing an aircraft carrier, with help from an air in-

2. Coordinated behavior should scale up to higher tercept controller on an E-2. The distances and
levels of command. Instead of trying to cer- sizes of planes are not to scale. Two red enemy
ate larger and larger aggregate forces that ar enemy planes (&G-29's) are coming in from the
centrally controled, commanding agents ae east to attack the aircraft crier posing a threat
created (suich as platoon, company, battal- that the blue fighters must respond to. In the
ion commanders) whose purpose is to generate remainder of this section, we present the types
commands for lower levels and report back to of coordination implemented within TacAir-Soar
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F-44

A ~MIG-29

Figure 1: Example Scenario

using examples from this scenario as the blue and after taking off, or following an engagement,
red fighters engage. the planes must join up into a formation. It

is the resposibilty of the wngman to obtain
Flying as a Section the correct position and this is done using vi-

Iliorically, a section of two planes has been sual and radar cues without communication.
found to be the minimal effective fighting unit. However, in cases when the two planes are far
A section cousists of a lead and a wingman fly- apart, the wingman may request position in-
ing together on a joint mission. The tactcal lead formation from the lead. Although flying into
of the section directs the maneuvering of the sec- formation is primarily the responiility of the
tion, either through his actions or through explicit wingman, if the lead is far ahead, the lead may
communicatmi to the wingman. The goal of the maneuver, possibly employing a shadde turn,
wingman is to stay in formation and support the to allow the wingman to catch up as in position
activties Of the lead (such as through manipu- 1 of Fgr 1.
lation of its radar). In some ircumstances, the . Flying In Formation
wingman will take over as lead (such as if the A section of planes can fly in many different
lead's equipment malfunctions, or the lead is out formations, such as defensive combat spread,
of mdii). offiensv combat spread, fighting wing cruis,

To be an efective section, the lead and wing- or trail. When flying in formation, it is the
man must coordinate their maneuvering their responsibility of the wingman to maintain the
sensing of the environment, their employment of approprite position. In Figure 1, the P-14's
weapons, and the organization of their section. are initially in a parade formation.
Below is a detailed list of the behaviors that
have been implemented in TbcAir-Soar to coor- Changing Formation
dinat behavior for beyond-visual-rane engage- The specific formation used by a section can
ments such as in Figure 1. These descriptions change as the tactical situation changes. Fbr
(and our implementations) are idealizations of the example, a section might start off in a tight pa-
real behavioG, but capture much of the essence rade formation until it gets to its CAP station
off11he real behaviors, and then assume a defensive combat spread at

in position 3 of the scenario. It maintain that
formation until the later parts of an engage-

* Joining up In Pormation meat when the planes are cosing on an enmay,
If the planes of a section are split, possibly at which time they then move to an offensive
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combat spread. Employing Weapons

"* Coordinated Maneuvering * Targeting
As the lead maneuvers, the wingman attempts If there are multiple groups of enemy planes
to stay in fornmatio as in position 3 of the approaching, the lead (possibly with the AIC)
scenaro. However, for large turns, the sec- must determine which group to attack first and
tion must perform special maneuvers or ee mun this to the winman.
the wingman wi1 get out of formation. For S
example, when the lead wishes to turn 90 de- oen a section engages mltiple enemy planes,
grees toward the wingman, as in position 2, the it is critical ta t wm an. and lea o
lead will turn first and then the wingman will waste missiles by shooting at the same plane.
turn once the lead croses behind him. Con- w ste y must sM the en my plane .versely if the lead wishes to tuna~ from Thus, they must sort the enem planes, poema-
the wingman, the wih man turns frst Other bly by range, altitude or azimuth, so they arethe wingcludte win-place turns and fossoter targetmng different planes. In general, the leadmaneuvers include a vtake the plane that is the highest threatturna. (usually the lead of the opposing section).

"* Tkatical Maneuvering Controlling the Section
When engaging enemy planes, a section can
use special maneuvers in order to improve the e Changing the Lead
geometry of an attack, or to confuse an enemy. The role of the planes within a section can
Example maneuvers include a pincer (and half change if the wingman is in a better tact-
pincer), when the two planes separate and then cal situation, such an having more appropri-
close on an enemy, and a post-hole, where the ate weapons or better situational awareness.
section flies in a trail maneuver and the lead When the wingman takes over, he must assume
plane flies in a circle (to defeat an expected all of the responsibilities of the lead, and vice
missile and possibly confuse the enemy), giv- versa for the original lead.
ing up the lead to the second plane, which Communicatig Intent
then presses the attack. In Figure 1, the red
planes attempt to employ a pincer at position * Committing an Enemy
5. In addition, a section of planes may perform When an enemy plane has been identified as
defensive maneuvers together, such as jointly a bandit, and the commit criteria are reached,
turning into the beam to break radar lock and the lead will communicate the intent to inter-
avoid a missile. Finally, when attacking an en- cept to the wingman.
emy, the wingman will usually attempt to slide
to the outside of the formation to give the lead Flying a Section with an AIC or GCI
better position for the attack, as in position 4
of the scenario. Normally, a section of planes will have support

from either an airborne or ground-based radar
Sensing (G0). These radars provide a much broader plc-

* Radar ture (approximately 250 nms for an E-2) and can
By coordinating their radars, two planes can detect attacking planes well before the section it-
cover more area. The details of the 'radar sef will see the attackers.on its radar Thus, for
contract' can be determined during the brid- blue, the AIC provides position and identity in-
ing before the actual mission. When planes do formation about other planes. The AIC can also
get contacts, they communicate the relevant provide engagement information and redirect the
position information. Planes can also request mission of a section, although this is not currently
information if they have lost a contact. implemented in TaAir-Soar. For red, the GCI is

more in control and may direct the tactics used
"* Vision by the section (this is also not implemented in

Became it is sometimes difficult for a plane to TacAir-Soar).
detect enemy planes that are behind it, an im- Figure 2 is a dialogue produced between
portant responsibility is to check the rear of T rcAh-Soar agents acting as an AIC (Kiwi) and
the other plane. Another important use of vi- a section of two F-14's (Hawkl2l and Hawkl22)
sion is to identify unknown planes. Thus, a as they engage a VIG-29 in a slightly different
section may split up so that one plane can get scenario than in Figure 1. Lines starting with --
a visual identification while the other is posi- are comments and were not part of the commun;i
tioned for a shot if the plane is hostile. This cation. We have not attempted to duplicate the
type of within-visual-range coordination is not communication produced by humans exactly, but
yet implemented in ThcAir-Soar. instead we have attempted to include the inter-
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Ri-i: kiwi, hask121 your bogey is at bearing 23 for 143 angels 8
lach plane prefaces its commnication with its cal aig.

Swe Kiwi Is giving the bearing (23 degrees). range (143 ms) and altitude (8.000 ft).

Kiwi: kiwi. Contact Is a bandit
Kiwi is confirming that the bogey Isan enemy plan.

hawl21: hawki2l. Contact is a bandit
Eawk122: 1ogar
MaUlI2: hawkl2i, Conit bearing 23 for 140 angels 8

SahkMl decides Its comit criteria have are achieved and starts to intercept the bandit.
Eail2l uses the Information from Kiwi to plot an Intercept course

Kiwi: kiwl. hawk121 yoe bogey is at bearing 21 for 13? an•ols 8
SKiwi periodically reports position Information to the fghters.

aukl2l: Roger
Rawki2: Roger
Kiwi: kiwi. Bandit is closing on a hot vector
Iawki2l: haskl2l. landit Is closing on a hot vector
Nawki2l: hawkl2l. Go to defensive combat-spread formation.

; The Section changes formation for the attack.
Kiwi: kiwi. hawk121 your bogey is at bearing 12 for 116 angels 8
NAkO2M: Roger
hawkWL: Roger
Nankl2l: hawki2l. Bandit is closing on a hot vector
hwk121: hawl2l . Foz three

; Rak21 fires a long-range missile and then performs an f-pole maneuver.
Rawk121: haxkl2l Cranking right

Fure 2: Ikace of communications between a F-14 section (Hawk121 and Hawk122) and an E-2 (Kiwi).

actions that are necessary for the planes to coo- are not both trying to the same activity (such as
dinate their behavior, maintain formation) at the same time.

From the perspective of coordination, common
Methods for Coordination doctrine eliminates the need for communication

For a section to coordinate its behavior, the in- (two cars passing each other do not need to nego-
dividual agents must know many things. They tiate which side they will pas), it allows an agent
must kmow the appropriate techniques and meth- to predict the behavior of other agents without
ods for maneuvering, sensing, employing weapons even knowing the exact identity of the agent, and
and cn the secton. They must also know it reduces the cognitive load on an agent because
the specific constraints under which the current an agent does not have to plan out its behavior
mission is being flown, such as rules of engage- f p12cipim
meat, commit criteria, and so on. During the In ThcAhr-Soa, common doctrine and tactics
mission, they must also build up their situational are represented in Soar's long-term menocy as
awareness, from their own sensors and through rules (as is all long-term knowledge). This con-
communication with others. Finally, they must stitutes the vast majority of knowledge encoded
coordinate their actions in the face of the world in TacAir-Soar.
around them. These different types of knowledge
are acquired at different times using the types of Mission Briefing
methods listed below. Before a mission, the participants are briefed on

Doctrne ad Thticsthe tactical situation, their. responsibilities, and
Common Doctrine and Tactics often, the responsibilities of others.
Doctrine and tactics specify methods and proce- The bridng helps establish specific operational
dures for behaving id the world. This is similar paramets required for coordination, such as the
to *odd confbucs, where independent agents can specific partners of a section, their formations,
create coodinated behavior by agreeing to be- the methods for communication (radio frequen-
have in certain ways under specific chicmstances des, call sins), the default radar contract, the
[Shoham and Tennenholtz, i992J. For example, default method for sorting bandits, any specific
drivers in the United States coordinate their be- tactics the section plans to employ, and so on.

.havior (and thus avoid accidents) by always driv- In cM r-Soar, the mission and all information
ing an the right side of a street. Similarly, the lead relevant to the current run is entered via an editor
and wingman have a division of labor so that they that is an extension of ModSAF. This includes the
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sides of the agents, the call sign of the agent, the ordinate with others in domains such as tactical
type of airplane being flown, rules of engagement, air combat. For each capability, we also describe
the location of mission-relevant landmarks, and so how TacAir-Soar implements it.
forth. The information is the loaded into Soar's
short-term memory, which makes it accessible to Extensive Knowledge Base
all of the rules in TacAir-Soar. Each agent must have an extensive knowledge

bae that includes all of the tactics and doctrine
Observed Behavior applicable to its possible roles in the maias in
During a mission, the members of a section can which it will participate. For example, a wing-
directly observe each other's behavior. Thus, be- man must have the same knowledge of doctrine
havior alone can be a signal for coordinating be- and tactics as the lead, so that the wingman can
havior, as when a lead makes a small turn, with- take oa when necessary. Mudch of this knowledge
out any explicit communication. is required even without coordination, but some

In TacAir-Soar, there is only limited use of co- will be unique to coordination activities, such as
ordination through observed behavior, with the section-level tactics.
wing responding to small turns of the lead being In TacAir-Soar, all of its knowledge is encoded
the best example. in a rule-base of over 1400 rules. Its doctrine and

tactics are encoded as a hierarchy of intertwined
Explicit Communication goals that are dynamically instantiated based on

The most flexible way to coordinate behavior is to the current situation and mision
explicitly communicate information between two
agents. However many factors drive the military Parameterdriven Behavior
to minimize verbal communication (it may be dif- An agent must be able to perform a variety of
ficult to transmit because of terrain and environ- activities in coordination with others, such as de-
mental factors, it increases the cognitive load on fined by a mission briefing. The agent's behavior
the agents that initiate and receive them, and it must be parameterized so that the knowledge rel-
can be jammed, intercepted, or used to localize evant to the current mission is us&' These may
the position of an agent). Explicit communica- sound trivial, but for some complex missions, the
tion is usually in natural language, and is one of infonnationin the briefing may involve fragments
the most timely types of communication, of. plans that the agent must integrate into its

In TacAir-Soar, explicit verbal communication overall behavior at the appropriate times. Thus,
is done via simulated radios (using the radio the gmerators of the agent's behavior must be
PDUs). There are a total of approximately flexible enough so that they can be modified dur-
twenty-five different message types that TacAir- ilg a briefing.
Soar agents can send and receive (these cover the Although one might be tempted selectively to
types of coordination covered in the previous sec- build the knowledge base of an agent during the
tion including messages for coordinating standard mission briefing, this would greatly restrict the
and tactical maneuvering, requesting and send- abilities of that agent during the execution of a
ing information about other planes, employing mission because of the dynamic nature of mis-
weapons, and changing the lead. sions. For example, once the planes have taken

Communication with TacAir-Soar is natural off and are headed to their original CAP station,
enough so that it is possible for humans to fly in the situation may change so that they are redi-
section with it using the HIP simulator interface rected to a different CAP station.
[van Lent and Wray, 19941. The HIP interface In TacAir-Soar, all mission-related behavior is
allows humans to fly either as lead or wingman based on a representation of the current mission
(or even as an E-2) and compose messages that that is held in a working memory. This can be ex-
TwcAir-Soa•. can understand, while receiving com- amined by the rules that make up its long-term
mands or acknowledgements from TacAir-Soar. knowledge. The mission can be specified at brief-

ing time, but also can be dynamically changed
Coordination Capabilities during the mission.

In this section, we draw together the capabili-
ties required for coordination in the tactical ir Reactive Execution
domain. This is based on the types of coordi- In order to respond quickly to changes in a part-
nated behavior (maneuverin& sensing, employ- net's behavior, an agent must be reactive. Of
ing weapons, etc.), and the methods for sharing course, computer generated forces must in gen-
knowledge (doctrine and tactics, mission brief- end be. reactive, but coordination requires that
logs, etc.). These capabilities serve as a require- they sometimes closely monitor the activities of
ments list for constructing an agent that can co- other friendly agents. When flying in a section,
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the wingman must constantly monitor the actions ate pieces. Instead they fill in prespecified ten-
of the lead, as well as the current spacing between plates. This approach has been successful for the
the planes. limited types of communication our agents need

In wcAir-Soar, the wingman's main goal is to to produce, but will break down when we get to
fly In formation with the lead. Rules are con- more complex interactions and for these we are
stantly monitoring the lead's actions and the po- investgating more general approaches [RuinDoff
sation of the wingman relative to the lead. When- and Lehman, 19941. The form of our mesmsges is
ever the wingman is out of position, rules fire to based on the *Comm Brevity' lists of terms used
modify the heading, speed, or altitude as neces- by Navy pilots This list contains over 150 terms,
Wmy. of which we use only those required for our cur-

rent level of coordination, which is approximately
Interruptible Processing 30 terms.

In being reactive, an agent is changing its behav- The most problematic type of communication

ior in response to the environment, however it is in when an agent wishes to refer to another plane.

not performing any extensive reasoning, nor is it For example, when the lead wishes to tell the

necessarily interrupting its ongoing goals. How- wirm an that they are committing to a bandit,

ever, when an agent is communicating with other the lead needs to specify which bandit it is. In-

agents, it must ofteu interrupt its current goals teral to the lead, this may be represented by an

both to process the communication and to change internally generated name (such as B12), but the

its behavior in response to a message. For ex-

ample, an agent may be flying an intercept of a stead, the lead must use positional information,

bandit based on previous information from an E- such as the bearing, range, and altitude of the

2. When a new message arrives with new posi- bogey. This is problematic because the positional

tion information on the bandit, the agent must information is inexact and time dependent.

acknowledge the message, possibly abandon its Translate messages into internal
current heading and compute a new heading.

In Soar, we have split the processing of incom- iortion
ing communications into two steps. The first is a The converse of the prior problem is translating
high priority activity that categorizes the message messages from other agents into an internal repre-
and modifies the internal state of the agent in re- sentation that the agent can work with. As above,
sponse to the message. The purpose is for this to to do this right in general requires solving the nat-
happen quickly before other messages overwrite ural language understanding problem.
it. Following this, rules sensitive to the change In the current version of TacAir-Soar, we are
will suggest changes to the current activities that also finessing this problem by only accepting the
the agent is pursuing. A more extensive exam- message types that our agents generate (although
ination of the problem of integrating commum- we ae also examining more general approaches
cation (and natural language processing) within [Rubinoff and Lehman, 19941). By limiting the
Soar systems has been done within the context types of messages the system can accept, it is
of modeling the NASA Test Director, who is re- straightforward to translate the messages into the
sponsible for coordinating the launch of the Space internal goals, actions, and state information of

Shuttle [Nelson et aL, 1994]. our agents As above, the most problematic tak
is handling references to other agents, and this

Translate internal information into is done by finding the agent in the environment
messages that most closely matches the description it is

In order to communicate with other agents, an sent (Jones and Laird, 1994].

agent must be able to translate its internal in-
formation about its goals, its perception of the Conclusion
world, and its current actions into a form that The purpose of this paper is to examine the capa-
can be understood by other agents. To do this bilities required in a computer-generated force to
right in general requires solving the natural lan- support coordination. We have studied the low
guage generation problem. end of coordination as implemented in TacAir-

In the current version of TacAir-Soar, we are Soar, where there are tight interactions between
finessing the general problem and using an ad the agents involved. TacAir-Soar is proof that
hoc approach where we prespecify the messages such coordination is possible, but that it required
that the system can generate and when it should knowledge-rich, reactive, interruptible process-
generate them. Thus, our agents do not explic- ing, with high frequency of relatively short mes-
itly plan their communications nor do they dy- sages. Our long term goal is to study coordina-
namically construct messages from the appropri- tion across the command hierarchy. As we move
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up the command hierarchy, we would expect that [Jones and Laird, 19941 IL M. Jones and J. E.
the frequency of the messages will decrease and Laird Multiple information sources and multi-
the length of the message will increase, placing ple participants: Managing situational aware-
lea emphasis on reactivity and interruptibility news in an autonomous agent. In Proceeding.
and more emphasis on the process of interpret- of the Fourth Conference on Computer Gen-
ing and generating messages. erated Pore, and Behaavioral Representation,

May 1994.
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Abstract can play. An agent that uses only a highly
restricted subset of natural language may be

The creation of autonomous intelligent forces easily detectable as a computer-generated foe,
(IFORs) for both large-scale distributed simu- one that can be"gamed" without providing the

lations and small-scale, focussed training ex- actual training experience that is the point of

ercises creates unique challenges for natural the exercise. Further, an agent that is unlikely

language processing. An IFOR's role will to comprehend the subset of language actually

often be to replace one or more individu- used by human participants puts an undue bur-

als in an engagement, making the ability to den on those participants to communicate in

communicate in natural language key to its a way that it can respond to, again changing

performance as well its acceptance by other the rules of the game. Finally, an agent that

participants. In this paper, we describe the is rigid in its communicative ability may in-

capabilities an IFOR needs to communicate troduce a brittleness into the simulation (i.e. a

appropriately and discuss how the NL-Soar tendency to fail in unexpected ways) that has

language system provides these capabilities nothing to do with imperfections in strategic

for TacAir-Soar, an IFOR agent for beyond- or tactical knowledge.
visual-range combat. Although the need to address the problem

of natural language processing for IFORs is

Introduction: IFORs and Commu- clear, the problem is complicated by the di-
verse ways in which NL can be called on

nmcation to augment the functionality of the agent
For example, in building TacAir-Soar, a jet-

The creation of autonomous intelligent forces fighter pilot IFOR for beyond-visual-range
(IFORs) offers the possibility of running both combat [R1tLR93, RJJ+94], an NL capabil-

large-scale distributed simulations and small- i n dba s inter an amonip-

scale, focussed training exercises with lower ity is needed for basic interaction arong pi-

manpower. cost, and logistical support re-

quirements than previously possible. How- well as for descriptive explanation both dur-

ever, since an FOR's role will often be to ing flight and in after-action review. We

replace one or more individuals in an engage- are adapting the NL-Soar language system

ment, the ability to communicate in natural [LLN91, Lew93] to provide that capability.'

language can be a key aspect of its overall 'HemC we discuss our current work in basic in-

performance. An agent that cannot commu- teactive communication; see [Job94] for detils on
nicate at all is severely limited in the roles it explanation in after-action review.

65



Therearethreemain chactertcsofcorn- ing must occur within the system. Put sim-
munication during air combat that present ply, people can comprehend at rates of about
challenges for this research. The first chal- 250 mseclword (they tend to generate lan-
inge stens from the nature of the task itself: guage a bit more slowly). Although there is

language processing occurs in real-time, as variability (some words take as little as 50
a single aspect of behavior in a constantly msec, others may take closer to 1000 msec),
changing situation. Thus, in order to ade- the point is that, in general, the amount of time
quately simulate a human pilot, an IFOR must is linear in the number of words in the utter-
com and generate language at roughly ance. A number of design constraints follow
human rates. If it is too slow, it will be unable from this simple regularity [LLN99], e.g. con-
to keep up withboth the linguistic and non- struction of the meaning of the sentence must
linguistic demands of the environment. If it proceed incrementally, different knowledge
is too fast it may commit to actions before co- sources (e.g. syntax, semantics, pragmatics)
ordinating its behavior with other sources of must be applied in an integrated rather than
information (e.g. visual information from the pipe-lined or multi-pass fashion. NL-Soar
radar). provides these properties [LLN91, Lew93].

The second challenge stems from the nature Briefly, the system relies on Soar's notion
oftheimplementation: NL-Soar must be inte- of impasse to control the search through its
grated into the structure of an independently- linguistic knowledge sources, and then on
designed system. The organization of TacAir- Soar's learning mechanism to compile those
Soar (and of IFORs in general) derives from disparate pieces of knowledge into an inte-
the nature of the task(s) it performs; there is grated form that can be applied directly (ie.
no a priori reason to expect this organization in constant time/word) in the future.
to be consistent with the assumptions under- To make the nature of integration in NL-
lying NL-Soar's design. Soar more concrete, consider Figure 1, a

The third challenge stems from the partic- graphical representation of a particular sys-
ular nature of language in the domain. NL- tem that uses NL-Soar for comprehension and
Soar was originally designed to process corn- generation. Linguistic processes, like all pro-
plete grammatical sentences. The language cesses in Soar, are cast as sequences of Iop-
in the tactical air combat domain differs from erators .small arrows) that transform Mates
this both by including "ungrammatical" utter- (boxes) until a goal state is achieved. The
ances such as sentence fragments and by con- triangles in the picture represent iproblem
taining many special purpose constructions spaces which are collections of operators.
(e.g. "roger" or the use of call-signs). In the The comprehension problem spaces contain
rest of this paper, we explore the implications operators that use input from the perceptual
of these challenges in more detail and discuss system to build syntactic and semantic struc-
how we are addressing them. tures on the state; the generation problem

spaces contain operators that use semantic
structures to produce syntactic structures and

Real-time Communication motor output. Note that the there is a spe-
cial problem space, labelled Top, which is

Communication in an IFOR must occur in connected to the perceptual and motor sys-
real-time. This is not a statement about how 2FormowdetalonhowSoar umep obkmspoe,
fast the system must run, per se. Rather, it stmatmd opeator to organie its proceestng see
is a theoretical statement about how process- [New9OLNR87].
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tems. The Topspace is the only problem space all separate; it's as if the IFOR knew all the
designated by the Soar architecture; all other rules for how to communicate but had no ex-
problem spaces are provided by the system perienc using them. Off-line training allows
designe• The dotted lines in the figure rep- NL-Soar to learn from experience in a non-
resent Soar's impasses which arise automati- real-time setting. This gives the system the
cally when there is a lack of knowledge avail- time it needs to integrate its disparate knowl-
able in the current problem space. When an edge sources into "chunks" that NL-Soar can
impasse arises, processing continues in sub- apply in a single step. It is this highly corn-
spaces until the goal state in the subspace is piled formoflanguage knowledgethat models
reached. Thick banded arrows represent the an experienced pilot and provides real-time
resolution of an impasse, when chunks are language behavior on-line.
formed. Chunks are new pieces of knowledge
that are added to the system. They combine
those conditions in the pre-impasse problem Integrating Language with the Task
space that were used to reach the goal state
in the subspace with the actions performed in As mentioned above, NL-Soar was devel-
the subspace to reach the goal state. oped independently of TacAir-Soar. Indeed,

What does this mean for NL-Soar? As an as with many NL systems, NL-Soar was de-
example, consider the arrival of a new word veloped independently of the need to actually
into the Top state in some established context. do anything non-linguistic. But, of course,
Now assume that we have never seen the word most language, and certainly the communica-
in a similar context in the past. An impasse tion between a pilot and AIC or wing, is gen-
will arise and problem solving will continue emted and comprehended in service of some
in the Comprehension spaces until we reach task that is, itself, essentially non-linguistic.
the goal state in which we have defined the As a result, NL-Soar must be adapted to seem-
appropriate syntactic and semantic structures. lessly integrate the language capability with
When we return those structures to the Top those non-linguistic capabilities in the agent,
state, chunks will be formed. In this case e.g. perception, planning, reasoning about the
the chunks will propose operators directly in tasL We have successfully done this on
the Top state the next time this word is seen a smaller scale in NTD-Soar, a non-IFOR
in a similar context. In other words, the next agent3 . The structure of NTD-Soar, shown
zime, no impasse will occur; the problem solv- in Figure 1, is quite different from that of
ing that took place in the subspaces has been TacAir-Soar. In particular, NTD-Soar models
integrated into a smali number of Top space switching between multiple tasks by invok-
operators that execute directly to build the rel- ing each task from the Top problem space;
evant structures on the Top state. if a task is interrupted, its state is preserved

A consequence of relying on Soar's learn- in the Top space until it can be resumed. In

ing mechanism is that achieving real-timeIan- essence, NTD-Soar models tasks in a fashion
guage behaviorrequirestrainingNL-Soaroff- similar to co-routines. This structure allows

line in advance. (Requiring NL-Soar to "learn language to be integrated easily by treating it

while doing" would be equivalent to expect- asjust another task. Informationistransferred
ing the pilot to learn the domain language 3NTD-Sor is a model of the NASA test director
while flying the plane in battle.) When first who is responsible for coordinating many facets of the
loaded, TacAir-Soar/NL-Soar's lexical, syn- testing and prepamion that the Space Shuttle must go
tactic, semantic, and discourse knowledge are through before it can be launched [NLJ94].
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TOP
control knowledge for intedeaving

Comrehension Geration

Tas Spaces

Figure 1: Structure of NTD-Soar

between language and other tasks by sharing
the common Top state in the same problem
space in which the task-switching control is
done.

TacAir-Soar, in contrast, keeps only a sin- Execute-Mission
gle task active at a time, but it mairtains a
stack of levels of abstraction of that tosk, and
each level stays active as long as it is being
carried out. Thus TacAir-Soar uses Soar's top
state to keep track of the "execute-mission"
task, which stays active for the entire simula- Mig-Sweep
tion. Under this will be a stack of sub-tasks, (or oeei

such as "mig-sweep", "intercept", "employ-

weapons", and so on, each representing a
more detailed view of what the agent is cur-
rently trying to do. Much of TacAir-Soar's org tak spac
knowledge of its current situation and goals is
stored in sub-states associated with these sub- NL-Spar
spaces, not on the top state. Thus if TacAir-
Soar switched to language in its top state, as
NTD-Soar does, it would lose much of this
knowledge.

Because of the need to preserve TacAir-
Soar's stack of subtasks, we have modified Figure 2: NL-Soar with Tac. .oar
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NL-Soar to operate at any level of the stack specific, stressing brevity and clarity. In addi-
rather than just at the top. NL-Soar is thus in- tion to a highly specialized lexicon, this tends
yoked as a sub-task of the bottom-level task, to result in a fairly agrammatical, telegraphic
preserving the stack. The resulting structure style, with periodic lapses into more standard
can be seen in Figure 2. This structure has the English. This can be seen, for example, in
consequence of making language operate as a Figure 3, which shows an excerpt from our
sub-task of the domain task(s), rather than as protocols in which the AIC (whose call-sign
a separate task alongside them. While this is is blue tail) guides the pilot (whose call-sign
often reasonable, since the agent may be talk- is dakota 204) to acquire his bogey (uniden-
ing about what it's currently doing, it is not tiffed radar contact). (Punctuation has been
always so. Particularly in the case of compre- added to aid the reader.) We can see here
hension, it may turn out that what someone the use of domain-specific forms at all levels:
says to the agent has to do with an entirely syntactic (using call-signs in every sentence),
new task that the agent w:1 start working on semantic ("single" meaning "a plane flying
because of the communication. Given this unaccompanied"), and discourse ("roger" to
and related problems, we are still exploring acknowledge having heard someone). In ad-
the overall issue of how best to integrate the dition, the pilot's last utterance demonstrates
structures of TacAir-Soar and NL-Soar. the kinds of "imperfect" speech (here pauses

marked by "uh" and "eh") that NL-Soar must
be able to comprehend and generate.

Using Realistic Language This challenge is easier to handle in gen-
eration than in comprehension, because NL-

In addition to developing NL-Soar indepen- Soar has control over the structures that pro-
dently of TacAir-Soar, it was also developed duce the surface form during generation; if it
independently of the language of the tacti- needs to generate an "ungrammatical" struc-
cal air domain. This has two specific conse- ture, it can simply build it and mark it as a
quences. First, NL-Soar does not contain any special case. Of course, some care must still
of the domain-specific words and construc- be taken to make sure that the special cases
tions used in tactical air combat. Further- aren't -x general (for example, the ability
more, NL-Soar was designed to contain only to say -ger" must not allow NL-Soar to
competence knowledge. The competence- utter any word as a single-word utterance).
performance distinction [Cho65] reflects the The problem is more complex during coin-
difference between what people would rec- prehmesion because the system is trying to
ognize as fluent, grammatical speech, and recover the relevant structures from the sur-
actual speech as it occurs in everyday con- face form. Since NL-Soar can't know in ad-
versation. Thus NL-Soar must be able to vance whether the current utterance is fol-
comprehend and generate in accordance with lowing general English grammar, a domain-
domain-specific peformancedta, with all of specific grammar, or represents some sort
its idiosyncratic constructions, ungrammat- of speech error, the search space of possi-
icalities, self-coections, etc. In order to ble interpretations can become quite large.
help adapt NL-Soar to this requirement, we There are a number of techniques that have
have collected protocols of pilot/AIC and pi- been developed for dealing with this problem
loUwingIAIC communication in a number of [FB86, Gra83, WB80, Leh9O], although it re-
scenarios in a simulated environment Doc- mains for us to systematically evaluate the
trine with respect to communication is quite usefulness of each technique given the struc-
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MAKER STA rTr UflEBAIE
AIC 13:30:41 13:30:46 dakota 2 0 4. blue tail. contact 2 7 0. approximately 50

miles.
Pilot 13:30:48 13:30:49 dakota 2 0 4 is dean.
AIC 13:30:52 13:31:00 roger. dakota 2 0 4 contact now 2 7 0. approximately 45

miles. appears to be single. contact at angels 18.
Pilot 13:31:01 13:31:04 dakota204roger. intermittent contact.
AIC 13:31:06 13:31:11 dakota2 04. contact'snow270. approximately35 miles.
Pilot 13:31:15 13:31:22 dakota 2 0 4. contact on the nose. uh bearing 2 5 5. eh 26

miles.
AIC 13:31:23 13:31".24 roger dakota that's your contact

Figure 3: Sample pilot conversation
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Abstract
In order to explore the domain of air-to-air com- Unix workstation
bat with Soar, a unified theory of cognition used
to model human behavior, it was necessary to in-
terface Soar to vehicles which use the Distributed ModSAF SMI
Interactive Simulation (DIS) protocol. Rather
than create what would be in essence a simulator
of fighter aircraft, the ModSAF simulation system
was chosen to simulate fighter aircraft and pro-
vide a DIS interface. To link Soar and ModSAF, Network
we have developed the Soar/ModSAF Interface
(SMI). The SMI provides a simulated cockpit for
Soar pilots. To guide others in the development of Figure 1: The Relationship of Soar, ModSAF,
interfaces for other intelligent systems, this paper and the SMI.
describes the SMI along with associated design
constraints. Implementation details concerning
functionality, modularity, and efficiency are ad- ronment is much too costly and the requirements
dressed. We alho identify issues arising from in- of sensorimotor hardware development is too dis-
tegration difficulties. tracting from the central focus of behavior mod-

eling. Given these concerns, the natural testbed
Introduction for such development is a simulator. This simu-
Computer modeling of intelligent agent behavior lator should provide a rich, high-fidelity world so
is a concern to many researchers in the fields of that modeling of pilot behavior is not perverted
cognitive science., artificial intelligence, and psy- by simulation artifacts. Fortunately, the Mod-
chology. The Soar community is particularly SAF system [ModSAF] provides a rich simulation
interested in developing a model which encom- environment - it is designed to simulate vehicles
passes a unified theory of cognition [Soar]. To this in cooperation with conventional live force exer-
end, Soar researchers are interested in modeling cises.
agents that operate in challenging environments ModSAF provides a platform for research into
[TacAir]. Dynamic environments which require the control of all kinds of computer generated
the application of a fair amount of domain knowl- forces. In essence, ModSAF simulates the oper-
edge offer a diverse set of problems that must be ation of DIS compatible vehicles. These vehicles
addressed in developing agents which simulate in- can be directed by software-controlled agents or
telligent behavior. These problems require the human beings. By using ModSAF, researchers
development of a number of cognitive facilities in can focus their work on the development of be-
order to successfully simulate agent behavior and lievable agents rather than on vehicle simulation
the unified approach of Soar is helpful in merging issues, such as motion dynamics and DIS net-
these facilities into a coherent whole, working. Our work deals with the problems of

One environment which provides these chal- interfacing artificially intelligent agents, modeled
lenges is the domain of air-to-air combat. In using the Soar system, to ModSAF. The mod-
this domain, fighter pilots must make quick de- ule which supports the connection between the
cisions concerning enemy aircraft in the service two systems is called the Soar/ModSAF Interface
of completing a mission. Developing an intelli- (SMI). Figure 1 shows the relationship between
gent vehicle or robot to operate in such an envi- Soar, ModSAF, and the SMI.
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Soar agent condor101> p 062 facility for Soar agents via manipulation of the
(062 "racetrack-dir 092 relevant ModSAF components and creation of"racetrack-length 093 new facilities. For this reason, the SMI is not

"type barcap a simple translation device between the two sys-"risk-type high tems. Currently, control of a vehicle occurs
"heading 046 through setting the desired state of the vehicle
"altitude 047 such as its speed, heading, and altitude. This
"speed 048 level of control makes certain tasks difficult. For
"id *none* instance, it is not possible to cause the vehicle"e2c-id *none* to climb without providing a desired altitude.
-level-of-experience low Thus, attempting to stay in formation with an-
"voice *none* other vehicle during a climb is very difficult since
"ground-voice *none*) the agent must constantly monitor the altitude of

(092 -value 0 -units degrees) the other vehicle and reset its desired altitude ac-
(093 -value 36000 -units meters) cordingly, rather than simply climbing until the
(046 -value 0 -units degrees) other vehicle levels off. To more accurately model
(047 -value 7900 ^units feet) the vehicle control available to a pilot, the SMI
(048 -value 320 -units meters/second) will need to access lower-level ModSAF libraries

which more closely correspond to cockpit con-
Soar agent condor101> trols.

The majority of the cockpit functionality
Figure 2: Working Memory Elerients (WMEs) is already provided by ModSAF in other li-
Fgpresenting vehicle status information. braries. Examples include the radar screen, mis-

sile launching, and detection of visual objects.

These components are relatively straight-forward
First we discuss the abstraction the SMI cre- to access, requiring only the translation of units,

ates for Soar. We then move to the connection reformatting, and ieorganization of data. How-
between Soar and ModSAF, and why other alter- ever, the missing cockpit components require the
natives were not used. The "division of labor" development of completely new functionality. A
among Soar, ModSAF, and the SMI is also ex- radar warning receiver and a radio device forplained, followed by implementation detailsm inter-agent communication are examples. These

additional components use ModSAF libraries at

The Cockpit Abstraction a low-level, if at all. Much more design and de-

Since Soar agents are constructed by modeling veloient is required for such enhancements.

human pilots, it is imperative that the SMI pro- Communication between Soar and
vide an interface which emulates the environ- ModSAF
ment of the human pilots - the aircraft cockpit. The SMI design must be efficient and modular.
Soar agents receive input data corresponding to Soar and ModSAF are designed as stand-alone
sensory information they would obtain from the soar and eaF sre designed tond-alon
cockpit environment, e.g. radar displays, radio systems and each system is designed to be the
messages, vehicle status indications, and visual primary process running - not needing to func-
sightings out of the cockpit canopy. This informa- tion with other large processes. While these
tion is provided to Soar in the form of symbolic could be run as separate processes, Soar, Mod-
working memory elemenis (WMEs), not images SAF, and the SMI are incorporated into a sin-
or digitized audio. WMEs are the basic unit of gle process to reduce communication overhead
information on which Soar acts. Soar agents also and increase overall system throughput. There
issue output commands to control the vehicle's is no need to encode and decode over a more
motion, radar, weapons and radio. The specific general mechanism such as Unix sockets. This
Soar I/0 WMEs defining the Application Pro- also enables high-bandwidth communication be-
grammer Interface (API) to the simulated cock- tween Soar and ModSAF to be made more ef-
pit are documented elsewhere1 . An example of ficiently. Since both systems have a scheduler
the WMEs representing the vehicle's status are but one system must be in control of the primary
shown in figure 2. scheduling, it was decided that ModSAF should

Unfortunately, there is no cock-pit component call upon Soar at the appropriate times. This
is natural since ModSAF controls the simulatedprovided by ModSAF. The SM! must create this "world" and Soar agents are agents in that world.

'Users with access to the World Wide Web on The incorporation of Soar, ModSAF, and the
the Internet can view this information using the URL SMI into one process was fairly easy since all are
http://krusty.eecs.umich.edu/ifor. written in the C language and utilize user-defined
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C libraries. The communication overhead is re- no convenient way to use the functionality of the
duced by handling all I/O data flow through C tasks without committing to use of more Mod-
function calls. Input to Soar systems takes the SAF machinery.
form of adding WMEs to Soar's memory. Output ModSAF has a library which provides facilities
is carried out through placing WMEs in specific for editing various data structures. These graph-
parts of the memory. To ease the task of adding ical editors are used for such activities as creat-
Soar input working memory elements, an exist- ing vehicles and specifying missions to ModSAF
ing package was used that provides a convenient vehicles. The Soar agents, however, use a repre-
API to manage input working memory element sentation of missions different from that provided
retractions and assertions (SoarSIM]. by ModSAF. Therefore, the library that imple-

For efficiency, the decision was made to only ments the editor and one that uses it were modi-
pass integer data values to Soar even though fled so that Soar-compatible missions can be cre-
ModSAF calculated some data values using float- ated, saved, and modified. The modification of
ing point numbers. The Soar input values were the ModSAF libraries had a number of advan-
marked as being changed based on the rounded tages over writing an entirely new editor. First,
off values. This greatly reduced the number of the ModSAF editor has sub-modules defined for
memory updates needed during each Soar cycle, editing various data types, such as angles, speeds,
For small real number data items, the values were and map locations. These sub-modules are used
scaled into a larger integer range. by the Soar mission editor. Second, modifying

Until the advent of this project, Soar had been the editor library required much less time than
designed to support just one agent per process. would have been required to create a new edi-
Since Soar and ModSAF were to be run as a sin- tor from scratch. Even the time required to make
gle process, the Soar system had to be modified these additional changes with each future releases
to support multiple independent agents. Soar was of ModSAF is minor compared to the saved de-
generalized to allow the dynamic creation and de- velopment time. Finally, as screen area is at a
struction of agents, each operating with indepen- premium, reusing area that is already allocated
dent nemories and I/O channels. There was no benefits the user.
definitive critieria for defining an inter-agent com- When S6ar agents must communicate with one
munication mechanism, so none was created. another, they must use some medium. outside

their 1/O channels, just as humans do. In the
Functionality of Soar, ModSAF, and air-to-air domain, inter-agent communication is
the SMI carried out over radios. The generic radio inter-

Soar and ModSAF are very different systems. face of ModSAF-2 provides an implementation of
Each has certain capabilities that the other lacks this form of communication. Natural language
because they were designed to different ends. character strings are sent in DIS Radio PDUs.
When deciding where to implement certain func- Messages are generated by Soar as lists of WMEs
tionality, in Soar, ModSAF, or the SMI, the (one per word) which are then turned into charac-
strengths of the systems were the determining fac- ter strings by the SMI and passed to the ModSAF
tors. radio.

Ideally, ModSAF would be responsible for all Soar and ModSAF do conflict in one area.
vehicle and environment simulation and network ModSAF is a distributed simulation which causes
interfacing, thus representing the aircraft and the problems when agents are created on separate
world. Soar would be responsible for interpret- hosts. When an agent is created, a user inter-
ing the world and controlling the plane, as a hu- face is created for that agent, whether it be a new
man pilot does. Such a clean separation is not X window or a new I/O stream interleaved onto
possible. ModSAF provides a method for con- standard input/output (used by the Soar Devel-
trolling vehicles called tasks. A number of tasks opment Environment (SDE) [SDE]). This is no
with different priorities can be assigned to a ye- problem when one ModSAF is running on a lo-
hide. The behavior of a vehicle is the result of cal host. However, if more than one ModSAF is
the action of these tasks. Soar does not use these running and ModSAF's load balancing is active,
ModSAF tasks since a Soar agent typically de- then locally created agents will be simulated on
liberates about such things. The separation of remote hosts and their user interface will appear
vehicle simulation and tasks in ModSAF is not remotely. Fortunately, there are simple methods
perfect, so the SMI fills in the gaps to provide
a cockpit simulation to Soar agents. The Soar 2The generic radio library was added to ModSAF
agent, for instance, sets the desired altitude and in version 1.0. Prior to this, interagent communica-
speed of the vehicle. This means that some of the tion was performed using Message PDUs that were
functionality provided in tasks must be recreated generated and interpreted by the SMI but sent and
in the SMI. This is due to the fact that there is received by ModSAF
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for forcing agents to remain on a local host. In the help create the simulated cockpit. The ModSAF
long term, it would be useful to find a method for main program an- few additional libraries re-
allowing load balancing without interfering wii quired minor addit as to accommodate the SMI
the placement of the user interface. A more diffi- but their primary functionality was not altered.
cult issue in regards to load balancing is the mov- ModSAF uses Motif and X fPr its graphical user
ing of complex reasoning agents, such as the ones interface (GUI) as well as standard input/output
built in Soar. There is no simple mechanism to for its command line interpreter. Soar, which pre-
transfer both the complex reasoning state and the viously depended on standard input/output, was
knowledge used in that reasoning to another ma- enhanced to include an X interface. This enabled
chine, while the agent is interacting in the simu- Soar, ModSAF, and the SMI to present GUIs to
lated world. the user while maintaining module independence.
Implementation Details Each module opens a separate display connection

to the user's console and receives a separate event
The SMI must honor several design constraints, stream. This design has the drawback that there
Although the primary focus is on the automated is contention for screen real-estate due to a pro-
pilot which controls a single aircraft, there may liferation of separate windows.
be additional agents associated with a vehicle. A The SMI GUI enables the user to control the
fighter aircraft may have a Radar Intercept Of- simulation speed. This is helpful for speeding up
ficer (RIO) and an Air Intercept Control (AIC) the simulation in "dead spots" or slowing down
aircraft may have air controllers. Any of these the simulation to observe at a finer grain the
agents may be created or destroyed at any point changes in state. Additions to the SMI GUI are
in the simulation; there is no preset scenario.An abitarynumbr o agntsmay xis inthe planned and will provide more dynamic controlAn arbitrary num ber of agents m ay exist in theov r M d A an th I. n a di on o t eover ModSAF and the SMI. In addition to the
Soar system and an arbitrary number of vehicles SMI GUI, the ModSAF GUI was enhanced by
may exist in ModSAF. Not all of these vehicles adding two windows. The first provides ortho-
may be controlled by Soar agents. Some agents graphic projections of the PVD so that altitude

maybeco t holled nuher softies is relationships between vehicles may be depictedeven by humans. The number of such entities is graphically. This window was augmented to pro-
limited only by the processing speed and memory vide some other desireable features missing from
capacity of the host workstation. The SMI must the ModSAF PVD: snail trails and radar volumes.
be efficient so that the performance of Soar and Snail trails depict a history of vehicle positions
ModSAF do not degrade due to excessive commu- over time by using a series of dots. The radar
nication overhead between agents and their vehi- volumes are shown as fans indicating radar orien-

Tes e atation, beam height, and beam width. The sec-
There are also implementation constraints on ond window presents vehicle status information

the SMI. Both Soar and ModSAF are designed that is continually updated to clarify the statusas standalone systems and continue t' e onigo- of vehicle position, orientation, radar sightings,

ing development. The SMI must enable new ver- and weapon employment.

sions of Soar and ModSAF to be incorporated.
The Soar system is already implemented with a An alternative interface to Soar was devel-
number of hook functions and configurable sub- oped independently which utilizes standard in-
systems. Some of these facilities were generalized put/output. This interface, the SDE, runs in
to work more effectively with external systenms Emacs. It removes the need for separate win-
such as ModSAF, but no changes were needed to dows for Soar agents but forces the elimination
the Soar system releases. All SMI functionality of the ModSAF command line interpreter. Both
is incorporated through Soar's extensible mecha- Soar interfaces have their uses and Soar develop-
nisms. The SMI redefines Soar's scheduling com- ers have not fully committed to one or the other..
mand since ModSAF is in charge of scheduling,
and adds a number of commands useful in the
air combat domain. The SMI also adds a set of Conclusion
domain-specific right-hand side functions used in
Soar productions. The problem of connecting Soar to ModSAF

ModSAF is also designed with modularity as has brought some interesting technical challenges.
an important goal. Hence, only one library out of The challenges have helped the Soar system devel-
over 100 was modified to incorporate Soar and the opers to generalize Soar's extension mechanisms
SMI. In this library, the SMI is implemented as enabling all Soar users to benefit. And the Mod-
a software layer connected to ModSAF at a level SAF environment has been an effective tool en-
dealing with the aircraft vehicle simulation. The abling Soar agent developers to focus more closely
SMI calls upon a number of ModSAF libraries to on modeling human pilots.
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1. Introduction development of tactics, and evaluation of
The goal of our research effort is to develop proposed hardware. This is a non-trivial task,

generic technology for intelligent automated with many real-world complexities, and as such
agents in simulation environments. These agents it offers several advantages. It pushes research
are to behave believably like humans in these based on real-world needs on topics such as
environments. In this context, believability reactivity, real-time reasoning, planning,
refers to the indistinguishability of these agents episodic memory, agent modeling, temporal
from humans, given the task being performed, reasoning, explanation, and natural language
its scope, and the allowable mode(s) of understanding/generation. Furthermore, it
interaction during task performance. For forces the integration of all of these component
instance, for a given simulation task, one Al technologies, because it requires a single
allowable mode of interaction with an agent may automated agent to perform all of the functions
be typewritten questions and answers on a performed by a pilot in air combat.
limited subject matter. Alternatively, a different Simultaneously, however, as a simulation task, it
allowable mode of interaction for the same (or delimits the component technologies to be
different) task may be speech rather than integrated. For example, it does not force the
typewritten words. In all these cases, integration of vision or locomotion components.
believability implies that the agent must be Finally, the task also imposes external metrics
indistinguishable from a human, given the for success.
particular mode of interaction. Such an agent
technology can potentially provide virtual The task also poses an important constraint:
humans for the multitude of virtual reality the automated agents must believably act and
environments under construction. Its react like trained human pilots. These agents are
applications can be found in many fields, to take part in exercises with other human pilots.
including entertainment [1], education [5, If human trainees identify our agents as
chapter 3], and training [2]. automated pilots, they may take advantage of

specific known characteristics of their behavior.
To begin this effort, we have focused on Training in such a situation could actually be

creating specific automated agents for simulated harmful. For instance, if the automated agents
tactical air combat. The automated agents act as do not react as quickly as other human pilots (or
the virtual pilots for simulated aircraft, and will react too quickly), trainees may learn to act too
participate in exercises with real Navy pilots, aggressively (or not aggressively enough) in a
These exercises will aid in training Navy pilots, real aerial combat. Additionally, if the agents
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behave unrealistically, observers and tacticians situation. Since the observer can watch the
at "ground control" (who can watch the automated agent's actions much more closely,
simulated combat from different perspectives), the agent must have a higher level of
may not be able to develop realistic tactics and believability. As we add more aircraft, an active
strategies. observer, and switch to WVR, the agent must

have even higher levels of believability, with
Thus, this task requires the development of requirements for capabilities such as natural

believable automated pilots. For this fixed task, language (and speech) understanding/generation
believability refers to the indistinguishability of to support different types of radio
the automated pilot from a human pilot, given communication.
the scope of the task, and the allowable modes
of interaction. The scope of the task depends on The levels of believability provide us a means
(at least) the number of aircraft involved on each of staging an attack on this problem (and
side, e.g., whether it is a one "friendly" aircraft correspondingly staging the system development
versus one "enemy" aircraft (lvl) air-combat effort). Thus, to begin this effort, we have
situation, or a 2v1, or 2vN situation. The focused on an agent at a moderate level of
allowable modes of interaction depend on believability: an agent for lvi BVR air-combat,
whether it is a Beyond Visual Range (BVR) with a passive observer. Even at this level, the
combat situation, where pilots only get radar task remains highly knowledge- and capability-
information about the enemy aircraft, or Within intensive. Trained Navy pilots possess vast
Visual Range (WVR) combat situation, where knowledge about different mission types, tactics
the pilots can also directly see the enemy and maneuvers, performance characteristics of
aircraft. In 2vl (or 2vN) combat situations, the aircraft, radar modes, missile types and so
additional modes of interaction are possible: the on. The challenge for constructing an automated
pilots of two or more "friendly" aircraft may agent is then to integrate this knowledge into a
communicate via radios, electronic data links, or single system, along with the following
even by executing simple maneuvers. A human capabilities:
observer at "ground control" adds even more 1. The agent must be extremely flexible in its
modes of interaction. He/she can observe the behavior: Situations in air combat can
combat in progress on a TV monitor, zoom in change very rapidly. Unexpected events
and out on it, focus on the maneuvers of a can occur, e.g., an on-target missile may
particular aircraft, and so on. A passive observer fail to explode, or an aggressive adversary
can only observe the combat in progress, while may engage in some preemptive action
an active observer can supply the pilots new disrupting an ongoing maneuver.
information or commands over the radio. Accordingly, the agent must respond

The specific scope of the task, together with flexibly to the evolving situation.

the choice of certain modes of interaction, 2. The agem must act/react in real-time:
dictates the capabilities an agent must possess Since a human may be interacting with the
for believability. These capabilities define a agent in real-time, the agent must act/react
certain level of believability. If the agent in real-time as well.
possesses these capabilities, then we refer to it as 3. The agent must try to interleave multiple
having (or being at) this level of believability. high-level goals: For this task, the agent
For instance, consider a lvl BVR air-combat must continuously attend to at least three
situation, with no observers, and with a single high-level goals: (a) executing maneuvershuman pilot engaged in combat with a single to destroy the opponent; (b) surviving
automated agent. The only mode of interaction opponents' weapon firings; and (c)
is what the human pilot can view of the interpreting opponents' actions. Given the
automated agent's actions on its radar. The need for real-time response, the agent must
capabilities required for believability are that be capable of rapidly switching among
these actions must appear like those of a trained be caale of apid wing among
human pilot. An agent with these capabilities these goals (or achieving them in parallel).
has a certain (moderate) level of believability. 4. The agent must conform to human reaction
Suppose we add a passive observer to this times and other human limitations: As
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discussed earlier, the agent must not react operators. For instance, any maneuver
to input data faster (or slower) than a consisting of a sequence of actions is
human pilot would. The agent must also not implemented not as a single monolithic plan, but
maneuver the simulated aircraft like a rather as a sequence of appropriately
"superhuman", e.g., it must not make very conditioned operators in a problem-space. This
sharp turns. Finally, the agent must exhibit allows TacAir-Soar to respond flexibly to an
some unpredictability in its behavior, when evolving situation, and not remain rigidly
appropriate. committed to a specific plan. Furthermore, this

5. Others: Some other capabilities such as constraint discourages highly specific, narrowly
planning, temporal reasoning, are alsoinstance, aplaningforthis temporallreasoningp lso problem space devoted solely to employing onerequired for this task in limited proportions, type of missile may not allow the system to

Note that, because a passive observer can switch quickly to employing a different type of
wate that, baut ted agentssire lobserlr tan missile, as the situation rapidly evolves. Inwatch an automated agent more closely than cotaaprbe saethtomiste

what is visible on radar, this additional level of contrast, a problem space that combines the

believability requires more accurate modeling of missiles facilitates such actions.

human reaction time and physical limitations.

TacAir-Soar's highly reactive behavior
derives at least in part from Soar's ability to

2. Developing Believable Pilot Agents react at a number of different levels [3].
The basis of our work on developing Specifically, Soar can respond to new inputs at

automated agents is the Soar integrated three levels: (i) in a single production firing, (ii)
architecture [4, 6] (Due to space constraints, we in a single decision, which involves firing
will assume that the reader has some familiarity multiple productions, or (iii) in a problem-space,
with the Soar architecture). Some of the which involves executing multiple decisions.
characteristics of this task are particularly well- Thus, as the situation changes, Soar can respond
suited for Soar. First, Soar is a single unified very quickly within the time-span of a single
architecture for the research, development and production firing. If needed, it may also respond
integration of various component Al after much deliberation in a problem space.
technologies. Second, Soar represents a Additionally, Soar's efficient implementation
developing unified theory of cognition, which is technology plays a large role in allowing it to
advantageous, given the constraint of respond in real time.
psychological verisimilitude (e.g., limitation on
reaction time) in this task. In achieving multiple high-level goals,

TacAir-Soar faces an interesting issue: as
The automated pilots for the lvl BVR air- limited by the Soar architecture, it cannot

combat task are based on TacAir-Soar, a system construct multiple goal/problem-space
developed within the Soar architecture, which hierarchies (in parallel) in service of the high-
currently includes about 1100 productions. level goals. TacAir-Soar can and does construct
TacAir-Soar encodes the basic task knowledge a goal hierarchy in an attempt to achieve the
for an agent in a set of problem spaces. A high-level goal of destroying the opponent. For
particular automated agent is realized by instance, to achieve the goal of destroying the
initializing TacAir-Soar with a specific set of opponent it creates a subgoal to "des-troy-with-
parameters, such as its mission, the level of risk missile". To achieve destroy-with-missile, it
it can take for the mission, and the kind of generates subgoals to get into missile firing
weapons it has available. range, and so on. However, TacAir-Soar cannot

construct goal-hierarchies for its remaining high-The current design of TacAir-Soar is guided level goals - survival and interpretation of
by two sets of constraints: the task requirements opponent actions - in parallel. To address this

(as specified by the targeted level of limitation, TacAir-Soar opportunistically installs

believability), and the Soar architecture itself, operators for these high-level goals into its

Consider the key requirement of flexibility of existing goal hierarchy (without eliminating the

behavior. This has turned out to be a strong hierarchy). This avoids the overhead of

constraint on the design of problem spaces and
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rebuilding the goal hierarchy, while allowing it We are currently extending TacAir-Soar to
to switch attention among different types of deal with co-ordinated multi-aircraft air-combat
goals rapidly. While this solution has allowed simulations. Essentially, we are extending
TacAir-Soar to exhibit reasonable performance TacAir-Soar agents to higher levels of
so far, it does have some disadvantages. First, by believability, and hence need integration of
not representing the different goal hierarchies capabilities such as natural language
explicitly, the solution does hinder TacAir- understanding/generation. Thus, so far, for this
Soar's ability to reason about the interactions task, the levels of believability appear to be
between multiple goals. Second, it is unclear if useful as a means of staging development, as
the scheme will generalize beyond the targeted well as for measuring believability. Whether this
level of believability. For instance, it is unclear usefulness will continue in the future, or for
if natural language understanding/generation other tasks, remains to be seen.
will fit into this scheme. Alternative solutions
are currently under investigation.
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Abstract exercises, the automated pilots must act in a
realistic manner, i.e., like trained human pilots.

The Soar-IFOR project is aimed at developing Otherwise, both the training and tactics
intelligent automated pilots for simulated tactical development in these environments will not be
air-combat. One key requirement for an automated realistic.
pilot in this environment is event tracking: the To act in a realistic manner, an automated pilot
ability to monitor or track events instigated by must, among other things, be responsive to events
opponents, so as to respond to them appropriately. in its environment - it must modify and adapt its
These events include the opponents' low level own maneuvers in response to relevant events.
actions, which the automated pilot may directly These events may correspond to simple actions of
observe, as well as opponents' high level plans and other pilots, such as changes in heading or altitude,
actions, which the automated pilot can not observe which the automated pilot may directly observe on
(but only infer). This paper analyzes the challenges its radar. Alternatively, these events may involve
that an automated pilots must face when tracking the execution of complex, high-level actions or
events in this environment. This analysis reveals plans of other pilots, which the automated pilot can
some novel constraints on event tracking that arise not directly observe. For instance, one crucial
from the dynamic multi-agent interactions in this event is an opponent's firing a missile at an
environment. In previous work on event tracking, automated pilot's aircraft, threatening its very
which is primarily based on single-agent survival. Yet, the automated pilot cannot directly
environments, these constraints have not been see the missile until it is too late to evade it.
addressed. This paper proposes one solution for Fortunately, the automated pilot can monitor the
event tracking that appears better suited for opponent's sequence of maneuvers, and infer the
addressing these constraints. The solution is possibility of a missile firing based on them, as
demonstrated via a simple re-implementation of an shown in Figure 1. The automated pilot is in the
existing automated pilot agent for air-combat dark-shaded aircraft, and its opponent is in the
simulationi, light-shaded one.

1. Introduction
The Soar-IFOR project is aimed at developing + lv • 1

intelligent automated pilots for simulated tactical
air-combat environments [11, 17]. These (a) (b) (
automated pilots are intended to participate in
large-scale exercises with a variety of human
participants, including human fighter pilots. These
exercises are to be used for training as well as for
development of tactics. To participate in such -

(d) (6)
17his research was supported under subcontract to the

University of Southern California Information Sciences Institute Figure 1: Manuevers of the automated pilot (in dark-shaded
from the University of Michigan, as part of contract N00014-92- aircraft) and its opponent (in light-shaded one).
K-2015 from the Advanced Systems Technology Office (ASTO)
of dte Advanced Research Projects Agency (ARPA) and the Suppose that initially the two aircraft are headed
Naval Research Laboratory (NRL). Critical support has been right toward each other as shown in Figure 1-a.
provided by Dennis McBride of ARPA/ASTO; and Tom Bran Jt, The range (distance) between the two aircraft is
Bob Richards, Ed Harvey of BMH Inc.
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more than 10-15 miles, so they can only see each firing behavior, which consists of a sequence of
other on radar. This range is slightly short of the such turns. The event may be internal to an agent,
range from which the opponent can fire a radar- such as maintaining a goal or executing a plan, or
guided missile at the automated pilot's aircraft. external to it, such as executing an action. The
However, the opponent is already well-positioned event may be instigated by any of the agents in the
to fire this missile once its range is reached. In environment, including the agent tracking the
particular, given that the two aircraft are pointing events, or by none of them (e.g., a lightning bolt).
right at each other, the opponent's aircraft is at The event may be observed by an agent, perhaps
attack heading (a point slightly in front of the on radar, or it may be unobserved, but inferred.
automated agent's aircraft, as shown by a small x Tracking any one of these events refers to
in the figure). At this juncture, the automated pilot recording it in memory and monitoring its progress
turns its aircraft as shown in Figure 1-b. Given that as long as necessary to take appropriate action in
the opponent wants to fire a missile, she turns her response to it. Tracking an event also includes the
aircraft in response to re-orient it to attack heading ability to infer the occurrence of that event from
(Figure I-c). In this situation, she reaches her other events.
missile firing range, and fires a missile (shown by Event tracking is closely related to the problem
-). While the automated agent cannot observe this of plan recognition (121, the process of inferring an
missile, based on the opponent's turn it can infer agent's plan based on observations of the agent's
that the opponent may be attempting to achieve actions. The term event tracking is preferred in
attack heading as part of her missile firing this investigation, since it also involves events
behavior. Unfortunately, at this point, it cannot be other than plans, and since it is a continuous on-
certain about the opponent's missile firing, at least going activity. However, more important than the
not to an extent where trained fighter pilots would terminology, of course, is gaining a better
infer a missile firing. However, if the opponent understanding of the nature of this capability. In
subsequently engages in an Fpole maneuver then particular, does the realistic multi-agent setting of
that considerably increases the likelihood of a air-combat simulation reveal anything new about
missile firing (Figure 1-d). This maneuver event tracking? Given the complexity of this
involves a 25-50 degree turn away from the attack domain, answering this question in its entirety is
heading (it is executed after firing a missile to beyond the scope of this single investigation.
provide radar guidance to the missile, while However, this paper takes a first step by focusing
reducing the closure between the two aircraft). on events relating to the actions and behaviors of
While at this point the opponent's missile firing is one or two opponents as they confront the
still not an absolute certainty, its likelihood is high automated pilot. Section 2 illustrates that even
enough, so that trained fighter pilots assume the within this restricted context, the air-combat
worst. and react as though a missile has actually domain brings forth some novel constraints on
been fired. The automated pilot reacts in a similar event tracking. Following this, Section 3 presents
mannei; by engaging in a missile-evasion one approach that we have been investigating to
maneuver. This involves turning the aircraft address these constraints. The key idea in this
roughly perpendicular to the missile-flight (Figure solution is a basic shift in the agent's reasoning
I-e), which causes the aircraft to "drop-off' framework: from the usual agent-centric to world-
(become invisible to) the opponent's radar. centric. Finally, Section 4 presents a summary and
Deprived of ralar guidance, the opponent's missile issues for future work.
is rendered harmless.

The above example illustrates that an automated
pilot needs to continually monitor a variety of 2. Event Tracking in Air-Combat-
events in its environment, such as the opponent's Simulation
turns and her (inferred) missile-firing behavior, so The primary constraint on event tracking in air-
as to react to them appropriately. We refer to this combat simulation arises from the fact that this is a
capability as event tracking. Here, an event may be dynamic environment, where agents continually
considered as any coherent activity over an interact. This continuous interaction implies that
interval of time. An event is similar to a process in the agents cannot rigidly commit to performing a
qualitat~ve process theory [81, as something that fixed sequence of actions. Instead, they need high
acts through time to change the parameters of behavioral flexibility and reactivity in order to
objects in a situation. This event may be a low- achieve their goals. For instance, in Figure 1-c, the
level action, such as an agent's Fpole turn, or it opponent has to re-orient herself to a new attack
may be a high-level behavior, such as its missile- heading in response to the automated pilot's turn in
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Figure 1-b. If the automated pilot had turned in A.
the opposite direction, so would have the
opponent. A more complex interaction occurs in
Figure l-e, where the automated pilot's missile (,)
evasion maneuver is a response to the opponent's
overall maneuvers in Figures i-c and l-d, which
are identified as part of her missile firing behavior.

Thes types of agent interactions extend well 41
beyond situations involving just two aircraft. For
instance, consider a situation where there are two
opponents attacking the automated pilot's aircrift,
as shown in Figure 2-a. Again, the automated pilot
is in the dark-shaded aircraft, and the opponents Figure 2: Agent interactions: (a) two opponents attacking
are in the light-shaded aircraft. These opponents the automated pilot's aircraft; (b) opponents stay
may either closely co-ordinate their attack or they close; (c) opponents stage a co-ordinated "pincer".
may attack independently. One method of close
co-ordination in the opponent's attack is shown in 2, the wingman may mainly be reacting to its
Figure 2-b. Here, the opponent closer to the lead'qs turns, or she may be reacting to the
automated pilot's aircraft (the lead) leads the automated pilot's aircraft independently.
attack, while the second opponent, mogcked with x Understanding this interaction is important in
(the wingman) just stays close to the lead, and tracking the wingman's actions.
follows her commands. Thus, as the lead turns to A second related constraint here is that event-
gain positional advantage, the wingmaa needs to tracking must occur in real-time and must not
turn in that direction as well, so as to fly in hinder an agent from acting in real-time. For
formation with the lead, all the while making sure instance, in Figure 1, if the automated pilot does
that she does not get in between the lead and the not track the missile firing event in real-time or
automated pilot's aircraft. Another method of close does not react to it in real-time, the results could be
co-ordination is shown in Figure 2-c. Here, the fatal.
opponents execute a coordinated pincer maneuver The third constraint on event tracking is that
- as the lead turns in one direction, the wingman agents must be able to expect the occurrence of
turns in the opposite direction, so as to confuse the unseen, but on-going events. This constraint arises
automated pilot and attack it from two sides. from the weakness of the sensors in this domain -
There are other possibilities of co-ordinating the an agent must sometimes track opponent's actions
attack as well. Of course, the opponents may not even though they are not visible on radar. For
co-ordinate their attack. They may instead try to instance, suppose in the situation in Figure 2-c, the
gain positional advantage in the combat automated pilot concentrates its attack on the lead,
independently of each other, and attack and as a result the wingman (marked with x) drops
independently. In all these situations, all three off the automated pilot's radar. Here, given that the
aircraft continually influence each other's actions opponents are inferred to be executing a pincer
and behaviors in different ways. If other aircraft maneuver, even though the wingman drops off the
are involved in the combat - for instance, if the radar, some expectation about her position can be
automated pilot is coordinating its attack with a developed. Thus, the automated pilot can re-orient
friendly aircraft -then they also interact with the its radar and reset its mode to re-establish radar
other aircraft involved in the combat. contact with the wingman if there is a need to do

This dynamic interaction among the agents leads so later during the combat.
to the primary constraint on event tracking in this The fourth and final constraint on event tracking
domain: an agent must be able to track highly is that it is not a one-shot recognition task. Instead,
flexible and reactive behaviors of its opponent. In it occurs on a continual basis, at least as long as it
so doing, the agent must take the appropriate agent is relevant to the agent's achievement of its goals
interaction into account. Without an understanding (such as the completion of its mission).
of this interaction, an opponent's action may lead Thus, this domain poses a challenging
to unuseful or even misleading interpretation. For combination of constraints for event tracking. The
instance, the opponent's turn in Figure l-c needs to most novel constraint here is the first one. In
be tracked as a response to the automated pilot's previous investigations in the related areas of
own turn in Figure 1-b. Otherwise, that turn may plan/situation recognition [12, 16, 6, 18, 3] -
appear meaningless. Similarly, as shown in Figure including one investigation focused on plan



recognition in airborne tactical decision making [21 recognition and DAI.
- this constraint has not been addressed. In The remaining three constraints on event
particular, plan recognition models have not been tracking - real-time performance, expectations
applied in such dynamic, interactive multi-agent and continuous tracking - have been addressed in
situations, and hence do not address strong previous research (e.g., in [61). The next section
interactions among agents and the resulting presents an approach that we have been
flexibility and reactivity in agent behaviors. In investigating for event tracking that addresses all
particular, these models assume that a single four constraints outlined above.
planning agent (or multiple independent planning
agents) has some plans, and a recognizing agent
recognizes these plans. The planning agent may be 3. Towards a Solution for Event
either actively cooperative (it intends for its plans Tracking
to be recognized by the recognizing agent) or The key idea in the proposed solution for event
passive (it is unconcerned about its plans being tracking is based on the following observation. All
recognized) [4]. The recognizing agent's job is to of the agents in this environment possess similar
recognize these plans and possibly provide a types of knowledge, they have similar goals, and
helpful response. However, neither the recognizing similar levels of flexibility and reactivity in their
agent, nor any other agents in the environment are behaviors. In particular, an automated pilot agent
assumed to have any influence on these plans. that requires the capability to track events shares
Consequently, these plan recognition models can these similarities with its opponent. Thus, the key
rely on pre-compiled plan libraries, where each idea is that all the knowledge and implementation
plan lists the sequence of events and the temporal level mechanisms that the automated pilot agent
relationships among the events [16). However, uses in generating its own flexible behaviors may
such lists cannot be employed in tracking highly be used in service of tracking flexible behaviors of
flexible and reactive agent behaviors. In particular, other agents.
all possible variations on agent behaviors would To understand this idea in detail, it is first useful
need to be included in such lists, leading to a to understand how an agent generates its own
combinatorial explosion in the number of plans flexible and reactive behaviors. Section 3.1
(unless a highly expressive plan language is explains this by focusing on an automated pilot
developed), agent A. and its flexibility and reactivity. Section

Grosz and Sidner [9], in their work on discourse 3.2 then illustrates how A. may exploit this for
situations, attempt to partly address the above tracking other agent's behaviors. Section 3.3
constraint on event tracking. They focus on what outlines the issues that arise in such an endeavor.
they characterize as the "master-slave" relationship Finally, Section 3.4 presents a simple re-
between the planning agent and the recognizing implementation of an existing pilot agent based on
agent assumed in plan-recognition models, and the ideas presented in this section.
attempt to remedy it by using shared plans. Note that while the solution presented here
Agents in their discourse situations arrive at a originated with the observation of similarity
shared plan by establishing mutual beliefs and among agents, it is not necessarily limited to only
intentions about things such as their role in those situations. For instance, it is possible that
executing the plan. However, their discourse even though the other pilot agents may possess
situations involve agents that are actively similar levels of flexibility and reactivity, they may
cooperative, while agents in air-combat simulation be constrained in their behavior by their doctrine.
range from actively co-operative to passive to To track these types of constrained behaviors, Ao
actively un-cooperative, would need to use similar types of doctrine-based

Interestingly, while plan-recognition systems constraints in tracking behaviors of other agents.
have not dealt with such dynamic multi-agent
situations, Distributed Al (DAI) systems, which
have dealt with such situations, have not addressed
the problem of plan recognition. There is some 3.1. A n Agent's hwn Behavior
work in DAI on understanding other agents' This section illustrates how an automated pilot
plans [7]. However, it focuses on agents agent A. generates flexible and reactive behavior.
exchanging their plan data structures for active This illustration is provided using a concrete
cooperation, rather than on plan recognition. Thus, implementation of A0 in Soar [! 1, 17]. Soar is an
the first constraint actually appears to give rise to a integrated problem-solving and learning
novel issue intersecting the areas of plan- architecture that is already well-reported in the
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literature 114, 15]. The description below abstracts EXECE-MSS TOP-PS
away from many of the details of this
implementation, and mainly focuses on Soar's .
problem space model of problem-solving. Very
briefly, a problem space consist of states and . EXECUTE-MISSION

operators. An agent solves problems in a problem FLY-RACErrCKc

space by taking steps through the problem space to
reach a goal. A step in a problem space usually
involves applying an operator in the problem space NWT-M= L ECeP

to a state. This operator application changes the cASE-OI "Er f

state. If the changes are what are expected from the . .....
operator application, then that operator application
is terminated, and a new operator is applied. If the r-GET-MISSILE-UT. EMPLOY-MSLE

operator does not change the state, or if the i
changes it causes do not meet the expectations,
then a subgoal is created. A new problem space is
installed in the subgoal to attempt to achieve the GET-MISSILE-LAR

expected effects of the operator. (Note that the cur-To-L.s I
system uses a procedural representation for these I_.......__
operator expectations - a declarative
representation is not necessary. In particular, a _- !DErSRED-MANEUVERST"IARRT-TR

procedural representation is sufficient to determine STAOR-TURN
if the expectations are achieved.) __.... _

Figure 3 illustrates the problem spaces and
operators Ao employs while it is trying to get into
position to fire a missile. In the figure, problem Figure 3: A0's problem space/operator hierarchy. Boxes
spaces are indicated with bold letters, and indicate problem spaces. Text in italics indicates

operators being applied in italics. In some problem currently active operator within a problem space.

spaces, alternative operators are also shown (these is not directly achieved. TIhs leads to a subgoal
are not italicized). In the top-most problem space, into the intercept problem space, where Ao
named TOP-PS, Ao is attempting to execute its attempts to apply the employ-missile operator.
mission by applying the execute-mission operator. However, the missile firing range and position is
This is the only operator it has in this problem not yet reached. Therefore, A0 subgoals into the
space. The expected effect of this operator is the EMPLOY-MISSILE problem space, and applies
compl,-tion of Ao's mission, which may be for the get-missile-lar operator. (LAR stands for
example to protect its aircraft carrier. Since this launch-acceptability-region, the position for A. to
expected effect is not yet achieved, a subgoal is fire a missile at its opponent). The get-missile-lar
generated to complete the application of operator results in the application of the
execute-mission. This subgoal involves the achieve-proximity operator in a subgoal. Finally,
EXECUTE-MISSION problem-space. There are this leads to a subgoal into the start-turn operator
various operators available in this problem space in the DESIRED-MANEUVER problem space.
to execute Ao0 s mission, including intercept (to The application of this start-turn operator causes
intercept an attacking opponent), fly-racetrack (to Aoto turn. Another operator - stop-turn - will
fly in a racetrack pattern searching for opponents be applied to stop the aircraft's turn when it
when none is present), etc. In fact, in most of A.'s reaches a particular heading (called collision-
problem spaces there are always several such course). This heading will be maintained until
options available, and Ao has to select a particular missile firing position is reached. At that time, the
operator that would allow it to make the most expected effect of Ao's get-missile-lar operator
progress. In this case, A. selects the intercept will be achieved, and hence it will be terminated.
operator so as to intercept the opponent's aircraft. A. can then apply the final-missile-maneuver
Given the presence of the opponent, this is the best operator from the EMPLOY-WEAPONS problem
option available, space. The final-missile-maneuver operator may

Ao attempts to apply the intercept operator- lead to subgoals in other problem spaces, not
However, the expected effect of this operator - shown in the figure.
the opponent is either destroyed or chased away - Thus, by subgoaling from one operator into
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another a whole operator/problem-space hierarchy other characteristics related to this domain. That is,
is generated. The state in each of these problem An and its opponent have identical problem spaces
spaces consists of a global portion shared by all of and operators at their disposal to engage in the air-
the problem spaces and a local portion that is local combat simulation task. This simplifies A.'s event
to that particular problem space. This organization tracking task, since it can essentially use a copy of
supports reactive and flexible behaviors given its own problem-spaces and operators to track the
appropriate pre-conditions (or conditions) for the opponent's actions and behaviors. Operators in
operators, and the appropriate operator selection these problem spaces represent A.'s model of its
and termination mechanisms, as outlined in [131. opponent's operators. These operators are denoted
In particular, if the global state changes so that the using the subscript opponent. Thus. the
expected effects of any of the operators in the execute-mission operator used in modeling an
operator hierarchy is achieved, then that operator opponent's execution of her mission is denoted by
can be terminated. All of the subgoals generated eecute-mission . Similarly, operator_ .
due to that operator are automatically deleted. Note wlbudoyeope to

will be used to denote a generic operator used by
that A0 may also terminate an operator even if its the opponent.
expected effects are not achieved. This may be The global state in these problem-spaces
achieved if another operator is found to be more represents Ao's model of the state of its opponent,
appropriate for the changed situation. For instance, and is denoted by stateoppone0  Generating
suppose the opponent suddenly abandons the state requires A to mdl features such as
combat and turns to return to it base while A0 is topponentheopponent's sensor input. Based on information
attempting to fire a missile at the opponent as such as the range of opponent's sensors, at least a

shown above. In this case, the chase-opponent portion of this state can be generated. However,

operator may be more appropriate than the portion of state

employ-missile operator in the intercept problem other portions of statepponent may require fairly

space. Hence, Ao terminates the employ-missile complex computation, essentially mirroring the

operator (all its subgoals get eliminated as well), computation that Ao requires to generate all of the

and instead, Ao applies the chase-opponent information -in stateown. For instance, one

operator. important piece of information that is computed in

Since all of the above operators are used in stateown is the "angle off" (the angle between the
generation of A.'s own actions, they will be A0 's flight path and opponent's position).
henceforth denoted using the subscript own. For Mirroring this computation in state nent will
instance, employ-missile,,,n will denote the mean the computation of this "angle off' from the
operator A. uses in employing a missile. opponent's perspective (the angle between the
Operator will be used to denote a generic opponent's flight path and Ao's position). For now,

operator that Ao uses to generate its own actions. we make another simplifying assumption - that
The global state in these problem spaces will be Ao generates a detailed and accurate stateopponent
denoted by stateow,. Problem-spaces that consist - and revisit this issue in Section 3.3.
of state0 n and operatorown will be referred to as The problem spaces consisting of state0  ent
self-centered problem spaces. The motivation for and operataropponent discussed above are referred
using this method for denoting states operators and to as opponent-centered problem spaces. With the
problem spaces will become clearer below, opponent-centered problem spaces, Ao can

essentially pretend to be the opponent. Ao then
tracks opponent's behaviors and actions by

3.2. Tracking Other Agent's Behaviors pretending to engage in the same behaviors and
Given the similarities between Ao and its actions as the opponent. In particular, Ao applies

opponent, the key idea in our approach to event operator' to thus modeling the
tracking is to use Ao's problem space and operator opponent s actual application of her operator to her
hierarchy to track opponent's behaviors. We will actual state. Since Ao is modeling the opponent's
first illustrate this idea in some detail using some action, operatoronent does not change
simplifying assumptions. The detailed issues stateoppnenr Instead, if the opponent takes some
involved in operationalizing this idea will be action in the real-world, then that change is
discussed in Section 3.3. modeled as a change in state - If this change

To begin with, let us assume that Ao and its matches the expected effets of onent,
opponent are exactly identical in terms of the then that effectively corroborates A0 s modeling of
knowledge they have of this domain, and all their
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operatoroppone..r (Note that as with A.'s assumption, and we will return to it in Section 3.3.
operator,,,, these expectations of operatoropponent Figure 4-b shows A.'s own operator hierarchy
may also only be represented procedurally. This corresponding to the situation in Figure I-a. We
procedural representation is sufficient to match the assume that Ao dovetails the execution of these
expectations.) If these expectations are operator hierarchies, communicating important
successfully matched, operator_ neat is then relevant information from one to the other.
terminated.. As an example, consider oMTOR-ow OtMRATOM-OWN

start-turnm..... being applied to state op net" If NEARa•IaV HIEAa4v

the opponent actually starts turning, ihen the
operator start-turn opoen is corroborated and TO"CS XETEl~-MISSION T0p-PS XMMJa C"

terminated. Of course, low-level operators such as
start-turn opponent are easy to corroborate in this _C IM"CECT

manner, since the actions they model are directly &UmSION FL-ERAwM

observable. Others, however, may not generate -

low-level actions that are directly observable. One
category of such operators are the higher level EmLOr-,1nM wEMcE 'Eor-wss•,,-. cT
operators like employ-missileopponent, which CA • [ C & ,
consists of a number of low-level actions. This
issue will be discussed below. .. tLoMssaM GET-Mamsu."

This technique of event tracking, where an agent " I
models another by pretending to be in that agent's I
position, has been previously used in automated C A EW___ __,.__n&E--M

tutoring systems [1, 191. These tutoring systems ACH4NMEA& .CrOK C EV-EO' ,
need the ability to model the actions of the L
students being tutored. For this, these systems use L

student-centered problem spaces where states and SW-[nA WTJNHE DEING,

operators model the students under scrutiny. This M I"-•
technique of modeling the student is referred to as .....
model tracing. The approach proposed fiere for (b)

event tracking is thus based on this model tracing
work. However, there are some significant Figure 4: (a) A model of opponent's operator hierarchy,
differences. For instance, previous work has and (b) A0 s own operator hierarchy.

primarily focused on static, single-agent Consider the model of the opponent's operator
environments, where the agent being modeled is hierarchy from Figure 4-a. One of the operators in
the only one causing changes in the this hierarchy is final-missile-maneuvers .,. opponent'
environment [10]. There are some other which models the opponent's final missile-
differences as well. However, before exploring the launching behavior. This is a high-level operator,
impact of these differences, it is useful to first and its expectations cannot be directly
understand in detail how A0 can perform event corroborated by observation. This operator is seen
tracking using its opponent-centered problem to generate a subgoal, where the first operator is
spaces. This is explained below using the example achieve-attack-headingopponenr This would require
from Figure 1. While this explanation does not a start-turnopponent operator to turn to attack-
directly describe the operation of an actual heading. In Figure I-a., attack heading is achieved,
implementation, it is based on an actual and stateopponent encodes that fact. Hence,
implementation that will be described in Section slop-turn ent
3.4. Basically, the description presented here will optopponent being modeled as the current
be used to motivate some representational operator, to model the opponent's stopping her
modification leading up to the implementation turn at attack-heading.
described in Section 3.4. Now consider Ao's own operator hierarchy in

Consider the situation in Figure 1-a. In this case, Figure 4-b. Ao is attempting to get into position to
Ao models the opponent's operator hierarchy as fire its own missile using the achieve-proximityown
shown in Figure 4-a. A0 is seen to accurately operator in the GET-MISSILE-LAR problem
model this goal hierarchy, and in particular without space. When the situation changes from Figure I-a

any ambiguity about what actions the opponent is to Figure I-b, Ao selects the cut-to-Isown operator
exactly engaged in. This is again a simplifying in place of the achieve-proximityown operator in
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the GET-MISSILE-LAR problem space. This final-missile-maneuvers opponent operators is
operator is intended to increase the lateral corroborated and terminated. Following that, an
separation between the two aircraft.2  The Fpoleopponent operator in the EMPLOY-MISSILE
cut-to-isown operator causes Ao to turn its own problem space predicts an Fpole turn. This again
aircraft as shown in Figure 1-b. As the aircraft generates a subgoal, back into the DESIRED-
trns to a particular heading, this new heading is MANEUVER problem space and the
modeled in stateown. Thus the cut-to-Sown start-turnmopponn operator is reapplied. When the
operator leads to indirect modification of stateown. opponent executes her Fpole turn in Figure 1 -d, the

This change in stateown has to be communicated Fpoleopponent operator is corroborated and
to state poneat, to update A.'s heading in terminated. At this point, all of the expectations
stateopponeac This leads to further modification in for the high-level employ-missileoppone0 t operator
state oppone, indicating that the opponent's attack are corroborated; and hence state_ neat is
heading is no longer achieved. Based on this modified to indicate that a missile launchi highly
modification, achieve-attack-headingopponeat is re- likely. These changes in state opponent- the change
activated (or re-applied). This operator again in the opponent's heading and the highly likely
subgoals into the DESIRED-MANUEVER status of the missile launch - are once again
problem space where the start-tumopponent communicated to stateown. Based on the high
operator is reapplied. When the opponent starts likelihood of the missile launch, Ao activates the
turning, this operator is corroborated and operator missile-evasionown to evade the incoming
terminated. The next operator in this problem missile (Figure l-e). This change in A.'s heading
space is stop-rurningopponent. When the opponent is once again communicated back to stateopponent.
actually stops turning after reaching attack Thus, Ao executes its own operators, and tracks
heading, as shown in Figure 1-c, stateopponent is opponent's actions and behaviors using the
modified to indicate that opponent's attack- operatorop- nt and stater ne t" This can help
heading is achieved, and hence A. to track its opponent's 1bhaviors, and address

op operator is corroborated. The all of the constraints on event tracking outlined in
change in heading in stateopponeat needs to be Section 2. However, there are some important
communicated back to stateown, so that Ao may issues involved in addressing our earlier
readjust its heading in cut-to-Isown if required. constraints with this approach. There are also

Continuing with Figure 1-c, the opponent's some simplifying assumptions that we made in
achievement of attack-heading also corroborates illustrating event tracking: (i) A. and its opponent
the achieve-attack-Izeadingopponeat operator, which are identical; (ii) A. performs all of the complex
is now terminated. A new operator from the computation that is necessary to accurately model
FINAL-MISSILE-MANEUVERS problem space opponent's state; and (iii) A. can accurately model
- pushfire-butopponent - is now applied opponent's operator hierarchy without any
This operator predicts a missile firing, but it is ambiguity. Relaxing these assumptions leads to
known that that cannot be observed. Hence, some additional issues, which also relate to the
push-fire-buttOnopponent is terminated even though constraints on event tracking. These issues are all
there is no direct observation to support that discussed in the next Section,
termination. However, the resulting missile firing
is marked as not being highly likely. Nonetheless,
this missile launch, even with its low likelihood, is 3.3. Addressing Constraints on Event
communicated to stateown0 so that A. may react to Tracking
it (for instance if Ao's mission forbids it from The first constraint on event tracking was for an
taking any risks at all). At this point, given the agent to track highly flexible and reactive
termination of the push-fire-buttOnopponent behaviors of its opponent, while taking appropriate
operator, opponent's agent interactions into account. The use of

opponent-centered problem spaces with
operatoroppone0 t and stateopponen, helps in partly

2Lateral separation is defined as the perpendicular distance addressing this constraint (this was the motivation
between the line of flight of Ao's aircraft and the position of its behind this approach to begin with). In particular,
opponent. When the two aircraft are pointing right at each other operatorpponent can be activated and terminated in
as in Figure 1-a, there is no latera. separation between the two the same flexible manner as operatorown. There is
aircraft. Increasing lateral separation provides a positional complete uniformity in the treatment of the two
advantage.
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types of operators. WCPS eliminates the need for passing messages
However, these opponent-centered problem to model interactions. Instead, interactions get

spaces by themselves do not address the issue of modeled in terms of changes to the single global
modeling the interactions among the different state. Operatorown and operatoroppoen are
agents. In particular, the method outlined in directly able to reference this global state as well
Section 3.2 requires building one operator as other operators. Furthermore, the problem of
hierarchy for A., and one for each opponent, with duplication of information is avoided. For instance,
their own .lobal states. This leads to a situation a missile fired by the opponent gets modeled
where multiple compartmentalized operator within this single global state as a single missile.
hierarchies with their own global states are Operator hierarchies modeling all of the different
generated. Modeling the strong agent interactions agents can directly react to this missile.
present in this domain requires passing messages An additional benefit of the single global state in
from one compartment to another. For instance, as WCPS also relates to one of the assumptions
described above, when Ao changes heading, that mentioned in Section 3.2. In particular, Ao need
information needs to be propagated from stateown not perform all of the complex computation
to state ..... Similarly, when the opponent fires required in modeling opponent's state, but instead
a missile that information has to be communicated it may "re-use" some of the computation. Consider
to stateown from stateopponenc Similarly, if A is to the example of the computation of "angle off'
take some action depending on whether the from the opponent's perspective, as mentioned in
intercePtoppoaent operator is being executed, then Section 3.2. With the global state in WCPS, Ao
that information would need to be propagated to does not need to recompute this "angle off'.
A.'s compartment. Instead, this is automatically computed in A.'S

Given the level of interactions among A0 and its stateown, and this can simply be reused. In
opponents, this message passing can be a particular, Ao's stateown already maintains the
substantial overhead. Furthermore, there can be computation of "target aspect" from its own
many aircraft involved in the combat, leading to an perspective (the angle between the opponent's
increase in the message passing overheads. This is flight path and Ao'S position). This is precisely the
particularly problematical given the second definition of "angle off' the opDonent's
constraint on event tracking (of real-time perspective. Thus, instead of computing the "'angle
performance) and the fourth constraint (which off" from the opponent's perspective and "target
implies continuous agent interactions). aspect" from Ao's perspective separately, a single
Additionally, the communication among the computation can be performed and used for both
different compartments essentially duplicates the purposes. Of course, not all of the complex
information of one compartment in another. For computation involved in generating the opponent's
instance, when a missile is fired, this information state can be avoided in this manner. The
is duplicated in different compartments. Such interesting research question then is determining
duplication is problematical in terms of what portion can be re-used in this manner, and
maintaining its consistency. If a missile is removed how much extra computat;on is really necessary.
from one compartment, it must be removed from This shift from small self-centered -d
all of the others. opponent-centered problem-spaces to WCPS

The solution we are investigating to alleviate the related to the objective framework usd in
problem with this compartmentalization is to simulation and analysis of DAI systems [51, which
merge the different operator hierarchies for the describes the essential, "real" situation in the
different agents into a single compartment, which world. However, the focus of our work is on an
we will refer to as world-centered problem space individual agent using its world~centered model for
(WCPS for short). WCPS eliminates the event-tracking. While this model introduces a shift
boundaries between different self-centered and towards an objective point of view, by definition, it
opponent-centered problem spaces. Instead, the is an agent's subjective view of its environment.
different operator hierarchies are maintained and may contain approximations in
within the context of a single WCPS. There is also operatoropponent and stateopponent.3
a single world state. This state includes Ao's own
problem-solving state (stateown), Ao's model of the
state of its opponent (stateopponent), as well as Ao'S
model of the states of other entities, including 3Note that if the agents do not interact, then a single WCPS
other opponents or friendlies in the world. may not be appropriate, and separate problem spaces may be the

right choice for modeling them.
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The second constraint on event tracking relates employ-inissileo ponent, which involves multiple
to Ao's ability to track events in real-time. The maneuvers. In this case, the intermediate headings
key impact of this decision is on generating an of opponent's aircraft may be important and just
accurate and unambiguous operatOropponent testing the terminating position may be an
hierarchy - one of the assumptions made in the inappropriate test for corroboration. Automatic
previous section. In particular, this constrains the generation of the right levels of abstraction is an
methods Ao can employ in attempting to generate interesting issue for future work.
an accurate and unambiguous operator hierarchy. The third constraint on event tracking was the
For instance, Ward [191 presents one general generation of expectations for an unseen, but on-
method for generating an unambiguous operator going event. In WCPS, the application of an
hierarchy. This method involves an exhaustive operatoroppoent in essence is the expectation for
search over all possible operator applications until the opponent to execute a certain plan or action.
the one that creates the right expectations, i.e., one Thus, this constraint can be addressed in a
that matches the opponent's current actions, is straightforward manner. However, since the event
created. If there is more than one such operator is unseen, there can be no corroboration of it. One
application, then one is chosen randomly. A possibility to deal with this situation is to terminate
wrong choice can be made in such situations. operator _.. if the relevant action is known to
However, as soon as that is discovered, another be unobservable (for instance, since the opponent's
exhaustive search can be performed. Given the aircraft is not observable on radar).
real-time constraint on event tracking, this type of The fourth constraint is related to the continuous
exhaustive search strategy can not be applied, nature of event tracking. The main implication of
While Ward suggests some heuristics to constrain this constraint is the continuous interaction among
the search, this remains a difficult problem. The agents, which as discussed above, leads to the
WCPS approach at least provides a partial answer move towards WCPS.
here. In particular, given the uniformity among There were also three assumptions made in the
operator,,, and operator ,m in WCPS, the previous section to simplify event tracking. The
mechanism employed in resolving ambiguity in second and the third assumption, related to
operatorown operators - search control rules - modeling of the opponent's state and operator
can also be used in resolving ambiguity in hierarchy have been discussed above. However,
operator .... Besides search control rules, the first one of the assumptions has not been
another possibility for resolving ambiguity in discussed. This assumption is that the automated
WCPS is to generate the goal hierarchy bottom-up pilot agent Ao and its opponent are identical. The
rather than top-down. While both of these are key implication of this assumption is that A0 can
powerful tools in WCPS, their advantages and create a copy of its own operator and problem
disadvantages in this context are not yet well space hierarchy to model the opponent. (This
understood. , creation of a copy by itself may not be

The real-time constraint also raises the issue of straightforward if all of A.'s knowledge is
abstractions in event tracking. In particular, Hill essentially procedural.) This assumption
and Johnson [10] have recently argued that essentially substitutes for another assumption in
tracking an individual agent's actions in detail in a the plan recognition literature: the agent that is
dynamic environment may prove computationally recognizing a plan is assumed to have full
intractable. They advocate detailed tracking only knowledge of all of the plans that the planning
where necessary, and reliance on abstractions agent can execute [12]. If A0 has such additional
elsewhere. In WCPS, abstractions in modeling an knowledge about how its opponent's plans or
operator would imply that detailed subgoals for operators, and how those differ differ from its own,
modeling that operator need not be generated. For then A0 need the ability to interleave those with its
instance, A0 may not model the detailed operators own copy of operators while tracking opponent's
used in accomplishing get-missike-laroppne. behaviors. If A0 does not have this additional
Thus, when get-missile-laroppownt is activated, it knowledge, then Ao will need to model its
may not lead to any subgoafi. However, when the opponent with incomplete information, or to learn
opponent actually reaches the LAR (missile firing that information from observation of the
position), get-missile-lar nt can be considered opponent's actions or by some other means.
as corroborated and terminated. Unfortunately, this
method of abstract modeling may not be
appropriate for corroborating an operator such as
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3.4. A Prototype WCPS-based Agent result is an implementation that is able to track
An important test of the WCPS model is its events while generating expectations. It is also

actual application in a dynamic, multi-agent promising in terms of being more robust in
environment. The task of developing an automated tracking events. The implementation tracks
pilot for the air-combat simulation domain is opponent's action and behavior as described
tailor-made for this test. The development of provided in Section 3.2. Simultaneously, as
automated pilots in this domain is currently based discussed in Section 3.3, it avoids the
on a system called TacAir-Soar [11, 17], which as communication overheads and duplication of
mentioned earlier, is developed using the Soar information. The implementation currently only
integrated problem-solving and learning works in single opponent situation. Work on
architecture. TacAir-Soar is a "non-trivial" system extending the implementation to multiple opponent
that includes about 800 rules.4 Its original self- situations is currently in progress.
centered problem space design worked against an
initial inactive opponent. However, it very quickly
failed against an active opponent - there was a 4. Summary
need for tracking events related to actions of the This paper makes two contributions. First, it
other agents. presents a detailed analysis of event tracking in the

To survive in this real-time environment, the "real-world", dynamic, multi-agent environment of
system was forced to employ world-centered air-combat simulation. This analysis reveals
problem spaces. However, these world-centered interesting issues that represent a novel
problem-spaces are created based on an incomplete intersection of the areas of plan recognition and
and ad-hoc mechanism, that suffers from three DAI. Tools And techniques that have emerged from
problems. First, event tracking is not robust, single-agent environments are inadequate to
meaning the automated pilot agent can and does address these issues. The second contribution of
generate unuseful or misleading interpretations for the paper is the idea of -.rld-centered problem
key opponent actions, such as the opponent's turn spaces (WCPS), for use in general multi-agent
in Figure 1-c. This lack of robustness also implies situations. WCPS is independent of problem
that the automated pilot is unable to deal with spaces as such - the key idea is that an agent
sensor limitations effectively. Thus, sometimes if treats the generation of its own behavior and
radar contact is momentarily lost, the agent may tracking of others uniformly. WCPS was used in
not track the opponent's actions. A second (re)implementing automated pilots for air-combat
problem with the existing world-centered problem simulation.
spaces is that event tracking does not generate The paper also outlined several unresolved
expectations. A third problem is that the agent's issues in WCPS. Among them, resolving
real-time response can suffer due to sequential ambiguity in opponent's actions, generating
operator execution. approximations, learning about the opponent from

We have implemented a variant of TacAir-Soar observation, and so on. We hope that addressing
that is fully based on WCPS. To create this these issues will help in allowing WCPS to
variant, we started with the operators and problem perform event tracking in a more robust fashion.
spaces that are used by a TacAir-Soar-based
automated pilot in generating its flexible actions
and behaviors. We then generated a copy of these References
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Abstract 1. Knowledge Acquisition

Testing and knowledge acquisition have been two 2. Implementation
of the most tedious and time consuming tasks in 3. Testing
the development of IFOR agents in the TacAir-
Soar (TAS) project. This paper presents some Usually the majority of the development time in
suggestions for a human control tool, similar to the TacAir-Soar project is spent in the knowledge
a simple flight simulator, that can be helpful in acquisition and testing phases. It is for this rea-
these two areas. Furthermore, we discuss some son that HIP has been developed specifically to
of the design considerations and implementation assi .: an these two tasks.
issues that are faced in developing such a tool. The main difficulties in knowledge acquisition
Such a tool, called the Human Instrument Panel are the vast amount of information that must
(HIP) has been developed for use in the TacAir- be acquired and the formulation of questions to
Soar project. Some key features of HIP are how extract the most important information. One
cheaply it has been developed, how quickly is was effective form of knowledge acquisition, which
incorporated into the TacAir-Soar project, and sidesteps the questions formulation difficulty, is
how easily it can be adapted to similar domains, to observe expert pilots as they fly missions on

simulators. This allows the questioner to identify
Introduction issues that might never come up in a question

and answer session. Unfortunately, the cost of
The Human Instrument Panel (HIP) is a tool de- running the simulators and getting the pilots and
signed to make the testing of TacAir-Soar (TAS) researchers to the simulator site does not allow for
agents in the ModSAF simulator easier and less the amount of free play that would be required to
tedious. Additionally it has been useful to a lesser cover the breadth of necessary knowledge.
extent as an aid in the lengthy process of knowl- Like knowledge acquisition, one of the difficul-
edge acquisition. This paper presents suggestions ties of the testing phase is getting the experts,
as to how this type of tool can be used as an aid in researchers, and machines together so that the
testing and knowledge acquisition and discusses eserts an maluate the r agent An-
some of the design considerations that the creator experts can evaluate the TacAir-Soar agents. An-
of such a tool might face. Since the Human In- other major difficulty is the lack of a flexible, re-strument Panel is meant to be a time-saving tol, alistic opponent against which to test the TAS
one major design consideration is that the time agents. ModSAF controlled agents are not suffi-and effort saved by HIP outweigh the time and ciently intelligent to provide realistic challenges toeffort spent on development and maintenance, the TAS agents and there is no support in Mod-SAF for direct human control of agents (i.e. noThe TacAir-Soar project[1] at the University flight simulator capability). Until recently, test-
of Michigan, ISI, and Carnegie Mellon University ing a TAS agent in a specific scenario required
has combined Soar, a state of the art artificial creating a separate set of TAS agents as oppo-
intelligence architecture, and ModSAF, a sophis- nents with hard-coded missions, and then care-
ticated battlefield simulator, to create realistic, fully designing the initial situation so that the
human-like computer agents in a beyond visual desired scenario would occur. This was a time
range air-to-air combat domain. The develop- consuming process and testing TAS agents only
meat of these agents can be viewed as a repeated against other TAS agents left the possibility of
cycle through three phases[2]: undetected errors.

One obvious solution to these problems is to

94



create a tool which acts as a simple flight simula- cial to the IFOR designer. First, one would like
tor interface to ModSAF agents. This would pro- to test the performance of an agent against a hu-
vide the ability to observe free play sessions with- man pilot. Such tests may involve determining
out expensive simulators (TacAir-Soar has been the response of the agent to specific tactical situ-
tested against BATTs1 simulators at the WIS- ation (e.g., bogey approaches TAS from the right,
SARD lab at the Oceans Naval base). Addition- rear quarter and performs a set series of maneu-
ally, the interface could also serve as a realistic vers). With HIP, the researcher can take con-
opponent for TAS agents, pointing out errors that trol of a plane and use HIP to approach the TAS
TAS vs. TAS testing might miss. This is exactly agent from the specified quarter and perform the
the role that the Human Instrument Panel (HIP) required maneuvers. The TAS agent's responses
is designed to fill. HIP allows the user to attach a to these actions can be recorded for later evalua,
simple instrument panel to a ModSAF agent and tion. This is an example of scripted testing. The
issue flight commands to that agent's plane. nature of the HIP interface also encourages free-

One goal of this paper is to describe the wide play testing. One can simply create a TacAir-Soar
range of possible uses for a human control tool agent, create a HIP agent, and then fly, head-to-
such as HIP in the creation of intelligent forces head. While on the surface this may seem more
(IFORs). Hopefully the ways in which we have like play than research, this can lead to the ob-
found HIP to be useful will suggest techniques servation of behaviors not explicitly seen during
that will make testing and knowledge acquisition scripted testing.
for other IFORs easier. Some of the design con- A second type of testing that can be accom-
siderations involved in creating human control plished with HIP is an agent's ability to coordi-
tools will be discussed along with the pros and nate its actions with other agents. This is done by
cons of the choices made while developing HIP. allowing a human and a TacAir-Soar agent to fly

The next section of this paper will describe the together. Communication from HIP to the agent
potential uses for human control tools, such as is accomplished using a series of pull-down menus
HIP, both as testing tools and aids to knowledge that correspond to the types and formats of ra-
acquisition. Section 3 will point out some of the dio messages the TacAir-Soar agents can send to
important design considerations and discuss the one another. The advantage of testing this coor-
advantages of various approaches while section 4 dination with a human pilot (as opposed to two
provides a quick description of the various forms IFORs interacting) is that specific tests can be
of HIP that we have developed (F-14D, MiG-29, scripted that would be difficult to carry out with
E-2C) including screen snapshots of HIP in ac- two IFORs. For example, consider the question
tion. of testing an agent's behavior when its wingman

is lost. Using an IFOR for this test would require

Functionality of a Human Control implementing an agent that would purposely lose
uTol t its lead. Similar tests in the BATTs are impos-

Tool sible since there is no communication interface

When we set out to develop the Human Instru- between that simulator and Soar. However, us-
ment Panel we were motivated by the need for ing HIP in this test requires only that the pilot
a flexible and realistic opponent for TAS agents. acting as the wingman fly away after establishing
As the project progressed we came up with many a communication link with the lead.
more potential uses which required only minor A third type of testing facilitated by HIP is the
additions to the original specifications. The func- ability to monitor the response of IFOR agents
tionality of human control tools can be divided in situations with varying world knowledge. For
into two categories: testing aids and knowledge example, an agent's behavior toward a single con-
acquisition aids. Since HIP was designed mainly tact should probably be modified if the agent
as a tool for testing we will focus primarily on is informed of multiple, hostile nontacts beyond
its applications to this phase. There are three radar visibility. This ability to control the agent's
major components of IFOR development in the world knowledge is achieved in HIP by introduc-
Tactical Air domain that HIP facilitates: testing ing a new plane type, the E-2C2 . The HIP E-
in a variety of situations, monitoring an agent's 2C can direct BRASH (Bearing-Range-Altitude-
local (instrument-level) behavior during testing, Speed-Heading) contact information to TacAir-
and scenario setup. Soar agents as well as to other HIP agents (and,

conceivably, to BATTs pilots as well). The HIP
Testing Intelligent Agents HIP enables E-2C also is complementing the design of an E-
three different types of testing that are benefi- 2C TacAir-Soar agent. Prior to the implementa-

'The Basic Air Tactics Trainer is a medium- 2The E-2C is a prop-driven, non-combat plane
fidelity aircraft simulator. with a large AWACS-style radar.
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tion of the HIP E-2C, there was no way to inform simple implementation.
TacAir-Soar agents about contacts out of their In considering the level of cockpit detail for the
radar range. HIP interface, one key decision was made which

affected the subsequent development of the tool.
Monitoring An Intelligent Agent's Behav- The TacAir-Soar agents use a cockpit absirac-
ior In ModSAF each unit is displayed as an icon tion[l] to interface with ModSAF. The agents
with associated heading, speed, and altitude val- send commands to ModSAF indicating flight pa-
ues. This is sufficient for observing a TacAir- rameters such as desired altitude and speed; Mod-
Soar agent's high level behavior but it does not SAP includes functions to convert these high-level
provide much information about how realistically commands into low-level flight surface, sensor and
the agent is flying nor any important information weapon controls. Since one of the goals of the
such as radar modes and weapon Eelection. An- HIP project was to produce a realistic tool as
other possible use of a human control tool is to quickly as possible, the TAS/ModSAF interface
"peek over TacAir-Soar's shoulder" as the TAS was adopted for HIP as well. This resulted in
agent flies by displaying that plane's instrument a less-realistic interface than many flight simula-
readouts while leaving the agent in control. To tors - there is no joystick and commands are en-
support this an option was added to HIP to at- tered for the desired heading, altitude and speed
tach the instrument panel to a plane but sup- while ModSAF determines the appropriate flight
press the transmission of any flight commands response. This decision does represent a compro-
from HIP. This has provided some useful feedback mise in simulator realism. However, since the do-
as to how certain flight dynamics are handled in main of interest is tactical rather than low-level
ModSAF. Additionally expert pilots may find it flight, this choice allowed much faste- develop-
easier to evaluate TacAir-Soar agents from the fa- ment while not compromising HIP's anticipated
miliar (somewhat realistic) cockpit perspective, uses.

Because HIP was to be used in a simulated en-
Building Scenarios The ability to selectively vironment with an unknown (and possibly large)
suppress or allow the transmission of flight com- number of other agents, HIP could not adversely
mands from HIP could also very useful when set- affect the normal operation of ModSAF; the
ting up scenarios to test an agent's response to added functionality had to be non-invasive. Simi-
specific situations. It is often difficult to set the larly, HIP also had to be transparent to ModSAF
initial position of each unit involved in the sce- so that ModSAF would work normally if no HIP
nario so that a desired encounter occurs. With agent were needed. The implementation decisions
the human control tool it could be possible to outlined below allowed HIP to achieve these re-
take control of each agent and fly it into exactly quirements. Finally, since HIP is usually run from
the position required and then return control to the same workstation as the simulator, its display
TAS. Once the user has taken control away from had to minimize interference with the ModSAF
TAS, HIP does not currently allow control to be display. This drove the decision to make the HIP
returned to TAS. This is due to the difficulty of F-14 and MiG-29 windows as small as possible.
keeping the TAS agent's internal state consistent Another factor in the design of HIP was that it
with the external world. Once this problem is needed to be simple to use. Building an interface
overcome, it is possible that TAS could learn be- that required pilot skill would have defeated many
haviors by "observing" while a human flies the of the functionalities described above. This de-
agent's plane and executes the desired actions. sign constraint was met by using a graphical inter-

Design Considerations face built to resemble a highly schematic cockpit.
Flight controls are modified using a mouse with

There are obviously many ways that a human "click-and-drag" widgets. This allows a novice
control tool can be implemented, each with vari- -user to receive instruction on HIP and be "up
ous advantages and disadvantages. In this section and flying" in less than five minutes. Addition-
we will discuss a few of these implementation de- ally, demonstrations and reviews can now include
cisions as well as some important high-level design sessions in which on-lookers can participate in an
considerations. engagement - with or against - an IFOR agent.

Finally, the time required to create HIP had
High-Level Considerations Although the to be considered, taking into account all the de-
anticipated uses of HIP drove its design, several sign goals and constraints mentioned heretofore.
other high-level factors had to be considered as HIP is intended as a tool to aid IFOR research
well. Four are discussed here: level of detail in the and not an end unto itself. The system had to
simulation, non-invasive interface with the simu- be developed quickly, with a minimum impact on
lator, shallow learning curve for new users, and a
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project personnel. Additionally, the completed ing and then firing a weapon) must be ordered by
system had to support the addition of features the HIP pilot. Therefore, pressing the fire button
and enhancements without significant effort. The has no effect when a missile is not loaded. Such
basic implementation strategy derives from this an umoded design is consistent with an actual
constraint, cockpit and adds to HIP's ease-of-use.

Human Control Tool/Simulator Interface Quick and Cheap Development The HIP
One of the first issues faced in the development ice rud a s oph a n compute
of HIP was how it would communicate with Mod- interface required a sophistication in computer

SAF. One possibility was to make HIP a part of graphics that would have required either expen-

the ModSAF executable. The advantage of this sive consultation or timhe for the designers to

approach was that communication could be ac- learn such sophistication. However, there are

complished via parameters to function calls and many software packages available that allow the

would allow for very fast transmission and as high design of user interfaces at the "widget" level

a bandwidth as necessary. The disadvantages rather than the pixel level of most computer

were that making HIP a part of the ModSAF ap- graphics programming. A widget is simply a
plication would make the executable larger and pre-defined graphics component with a specific
slower. As mentioned above one of our high level functionality such as a menu or slide-bar. Ex-

design goals was to limit any adverse effects HIP amples of such widget design packages include
might have on the ModSAF system. Because of X-Designer[3] (Imperial Software Technologies),
this, HIP was not incorporated into the ModSAF Builder Xcessory[4] (Integrated Computer Solu-

application. tions), and the Simple User Interface Toolkit[5] or
SUIT (University of Virginia). SUIT was chosen

The approach we chose was to make HIP a sep- for this project because it was available to the uni-
arate executable which communicated with Mod- versity free-of-charge and it included the follow-
SAF through UNIX sockets. A variety of in- ing needed features: a reasonable assortment of
terprocess communication packages would have widgets, the ability to design widgets with specific
been appropriate but sockets were chosen because functionality, and good documentation backed by
working code was available. The main advan- a large user group.
tage of the separate process approach is that HIP
can be run on a separate machine and therefore The ability to create user-defined widgets was
has very little effect on the speed of ModSAF. particularly important. For example, the first im-
Also the addition of the HIP communication in- plementation of the radar display contained only
terface added only 50 kilobytes to the ModSAF textual information and proved difficult to use.
executable while the entire HIP package would This information was encoded in the subsequent
have added well over a megabyte. The trans- design of the graphical radar display. The color
fer rate through the sockets seems well able to of a particular radar contact is used to represent
keep up with ModSAF; however, if this becomes the classification of an agent as friendly, enemy
a problem more efficient interprocess communica- or unknown. The shape of the contact deter-
tion techniques are available, mines if the contact is held via radar, visual or

both. A vector from the contact gives relative
Moded vs. Unmoded User Interface In ad- heading and speed information. This display has
dition to these requirements, the control structure proven simple to use, conveying a great deal of
of the final interface needed to be unmoded. A information via this customization of the widget.
moded system is simply one in which certain ac- Additionally, the capability to select targets by
tions can be made only when initiated by a pre- clicking on them in the radar display was added.
vious series of actions. Conversely, an unmoded This removed the necessity of identifying agents
design allows most functionality to be accessed in- by call sign or vehicle-id when targeting. Other
dependent of other actions. This capability was user-defined widgets include the heading display
important for HIP since most actions occur as a and the HUD. These widgets increase both the
response to the current situation. For example, a functionality and usability of the interface but,
pilot may decide to turn in response to a number because SUIT supports the design of such wid-
of different situations: firing a missile, evading an gets, does not require programming at the pixel
approaching missile, receiving an order from the level for such increased capability.
lead or taking advantage of the tactical situation. The first implementation of HIP (for the F-
Thus, it is important that a HIP pilot be able to 14) was done by two graduate students, working
turn at any time. Such behavior is supported by part-time over the course of a semester (approx-
HIP's unmoded design. Specifically, all controls imately three effort-months). This included the
in the HIP interface can be accessed at any time. full functionality of the agent described in Sec-
Controls that require a series of steps (e.g., load- tion 4 as well as researching the capabilities and
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payloads of the actual aircraft[6,7]. Modifying ated by utilizing the basic, generic structure that
HIP for a similar plane (the MiG-29) took about was purposely used in building the F-14 agent.
forty-five minutes of actual coding and about a Flying in HIP simply requires entering the
day to test after researching the appropriate flight name of an appropriate agent from ModSAF in
and weapons parameters. Finally, incorporating a the Select Plane text box, setting the desired
completely different plane-type, with both added starting configuration, and then hitting the Take
features and a different functionality (the &-2C), Control button. Once control has been estab-
took only 10 hours of total effort, again after the lished the user can then hit the button again to
appropriate research had been completed. These Release Control. As mentioned previously, the
efforts showed that our design goals had been user's activity while flying is unmoded and any
met: a tool had been developed quickly that could action can be taken immediately in response to
be used in number of ways and that did not inter- the user's evaluation of the current scenario.
fere with the simulator. Additionally, the design Although the flight controls are rudimentary,
criteria allowed the interface to be modified very Al t io n th HIght sho wn a t rud i s-
quickly for application to slightly different agents experimentation with HIP has shown that sophiw-in the same domain. ticated maneuvers can be accomplished. How-

ever, in addition to these maneuvers, inexperi-
enced pilots also often make mistakes. One of the

Description of HIP most obvious is turn too hard, too often, resulting

The F-14 version was the first HIP version con- in stalls. Stalls may be recovered by diving hard
structed (see Figure 1). The display is divided until speed increases sufficiently for re-engaging
into three sections. The left-most section includes the engines. What is interesting about these ma-
the communications interface and widgets for se- neuvers is that by just using HIP and getting a
lecting and deleting HIP agents (HIP may be used "feel" for flying, TAS designers have become more
to control more than one F-14 at a time). Com- comfortable with the problem domain and have
munications is accomplished via a series of win- gained insights into many of its features and limi-
dows that represent message templates. For ex- tations. This has proved an unanticipated benefit
ample, when the "Current Position" message is of HIP but one that is proving useful, especially
selected, HIP automatically fills in that informa- as the agents are modeled at increasing levels of
tion in the template. Messages not correspond- detail.
ing to the template messages can also be entered.
In the center of the display are the flight con- Conclusion
trols as well as buttons for releasing control of an While the examples in this paper have concen-
agent from ModSAF (toggling the transmission trated on the air to air combat domain, human
of commands to ModSAF) and quitting ModSAF. control tools can be easily transferred to other
There is also a simple Heads Up Display (HUD) in domains where a similar interaction is desired
the center of the window. The flight controls for between human and computer generated forces.
heading, altitude and speed include both the cur- The near-immediate extensions to HIP for the
rent value (given by the large, filled arrows) and MiG-29 and e-2C demonstrate the extensibility
the desired value (the small arrow in the heading of the basic tool. In the future we hope to ex-
display, the position of the sliders for altitude and tend HIP by creating versions for close air sup-
speed). Finally, the right-most section of the HIP tend ground fesiond or cles sup-
window consists of the radar display, radar con- port units, ground forces and other vehicles sup-
trols, and weapons controls. As mentioned pre- ported by ModSAF by utilizing the underlyingviously, targeting simply consists of clicking on ModSAF functions for low-level agent behavior.
contacts in the radar display. Thus, having invested in the implementation ofthe basic tool, application to different domains is

Figure 2 is an example of the HIP E-2C dis- considerably simplified.
play. The reduced-function flight controls have This paper has discussed some of the decisionsbeen placed to the right and the radar display Ti ae a icse oeo h eiin
enlarged and moved to the center. Weapons con- appropriate for developing a simple interface fortrols have been deleted and a new window created human interaction with intelligent forces. Thesetrol hae ben dlete an a nw wndowcreted decisions were constrained by the following ques-
for displaying the BRASH of the current contact- dionsw
of-interest (COI). This information is generated tions:
automatically when BRASH information is "ra- * What functions should be supported by the
dioed" to a TacAir-Soar agent. BRASH informa- tool?
tion can be generated with respect to either the
position of the E-2C or another agent. The HIP * How much effort can be invested in tool devel-
E-2C, with both a different display and different opment?
functionality from the HIP F-14 agent, was cre- o What tools are available to make development
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Figure 1: The HIP F-14 Instrument Panel.

Figure 2: The E-2C Radar Controller Window and Flight Controls.
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quick, inexpensive and robust? in 1991 and a Master of Science in Computer Sci-
ence from the University of Tennessee, Knoxville

In attempting to explore the trade-offs and ex- in 1993. Mr. van Lent also worked for the Naval
plain the rationale behind our answers we hope we Center for Applied Research in Artificial Intelli-
have provided a motivation and framework for the gence during the summers of 1992 and 1993.
development of similar tools. We have presented
the Human Instrument Panel as one example of Robert Wray is currently a doctoral student at
such a tool and described a wide variety of ways the University of Michigan. Mr. Wray received a
in which such a human control tool can aid in the Bachelor of Science in Electrical Engineering from
testing and knowledge acquisition necessary for Memphis State University in 1988 and a Master
any IFOR project. of Science in Electrical Engineering from the Uni-

versity of Massachusetts, Dartmouth in 1993. He
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